論文の概要: Measuring Déjà vu Memorization Efficiently
- arxiv url: http://arxiv.org/abs/2504.05651v1
- Date: Tue, 08 Apr 2025 03:55:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:56.874230
- Title: Measuring Déjà vu Memorization Efficiently
- Title(参考訳): Déjà vuメモリ化を効果的に測定する
- Authors: Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri,
- Abstract要約: 近年の研究では、表現学習モデルが誤ってトレーニングデータを記憶していることが示されている。
そこで本研究では,データセットレベルの相関を推定する手法を提案する。
これらは、再訓練することなく、市販モデルの記憶能力の近似に使用できる。
- 参考スコア(独自算出の注目度): 38.201992966736114
- License:
- Abstract: Recent research has shown that representation learning models may accidentally memorize their training data. For example, the d\'ej\`a vu method shows that for certain representation learning models and training images, it is sometimes possible to correctly predict the foreground label given only the representation of the background - better than through dataset-level correlations. However, their measurement method requires training two models - one to estimate dataset-level correlations and the other to estimate memorization. This multiple model setup becomes infeasible for large open-source models. In this work, we propose alternative simple methods to estimate dataset-level correlations, and show that these can be used to approximate an off-the-shelf model's memorization ability without any retraining. This enables, for the first time, the measurement of memorization in pre-trained open-source image representation and vision-language representation models. Our results show that different ways of measuring memorization yield very similar aggregate results. We also find that open-source models typically have lower aggregate memorization than similar models trained on a subset of the data. The code is available both for vision and vision language models.
- Abstract(参考訳): 近年の研究では、表現学習モデルが誤ってトレーニングデータを記憶していることが示されている。
例えば、d\'ej\`a vuメソッドは、特定の表現学習モデルとトレーニングイメージに対して、背景の表現のみを与えられた前景ラベルをデータセットレベルの相関によって正確に予測することが可能である。
しかし,その測定には,データセットレベルの相関を推定するモデルと,暗記を推定するモデルとの2つのモデルを訓練する必要がある。
この複数モデルのセットアップは、大規模なオープンソースモデルでは実現不可能になる。
そこで本研究では,データセットレベルの相関を推定するための代替的な簡単な手法を提案する。
これにより、トレーニング済みのオープンソース画像表現と視覚言語表現モデルにおいて、初めて記憶度を測定することができる。
実験結果から, 記憶の異なる測定方法が, 非常によく似た集計結果をもたらすことが明らかとなった。
また、オープンソースモデルは、通常、データのサブセットでトレーニングされた類似モデルよりも、集約記憶率が低いことが分かりました。
コードはビジョン言語モデルとビジョン言語モデルの両方で利用できる。
関連論文リスト
- A Geometric Framework for Understanding Memorization in Generative Models [11.263296715798374]
近年の研究では、深層生成モデルにより、デプロイ時にトレーニングデータポイントを記憶・再生することが可能であることが示されている。
これらの知見は、特に暗記によって引き起こされる法的およびプライバシー上のリスクを考慮して、生成モデルのユーザビリティを疑問視する。
本稿では, 多様体の暗記仮説(MMH)を, 暗記を推論する明快な言語として活用する幾何学的枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-31T18:09:01Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
拡散確率モデル(DPM)は、生成人工知能(AI)の主流モデルとして採用されている。
本研究の目的は,1) 理論解析のための記憶量,2) 情報ラベルとランダムラベルを用いた条件記憶量,3) 記憶量測定のための2つのより良い評価指標を用いて,DPMにおける記憶量の理論的理解を確立することである。
提案手法は,理論解析に基づいて,SIDE (textbfSurrogate condItional Data extract) と呼ばれる新しいデータ抽出手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T16:20:12Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
事前学習された視覚言語モデルは、画像と自然言語の統一表現をモデル化するために大量のデータを学習する。
本稿では,事前学習型モデルアプリケーションのための「事前学習型-弱教師付き学習」パラダイムについて検討し,画像分類タスクの実験を行う。
論文 参考訳(メタデータ) (2024-05-23T17:17:27Z) - Déjà Vu Memorization in Vision-Language Models [39.51189095703773]
視覚言語モデル(VLM)における記憶量測定のための新しい手法を提案する。
モデルでは、相関や画像キャプションから推測できる範囲を超えて、トレーニング画像中の個々のオブジェクトに関する情報が実際に保持されていることを示す。
サンプルおよび集団レベルでのd'eja vuメモリ化を評価し,最大5000万枚の画像キャプチャーペアで訓練したOpenCLIPにとって重要であることを示す。
論文 参考訳(メタデータ) (2024-02-03T09:55:35Z) - Emergent and Predictable Memorization in Large Language Models [23.567027014457775]
メモリ化、あるいはトレーニングデータから全シーケンスを出力する大規模言語モデルの傾向は、安全に言語モデルをデプロイする上で重要な関心事である。
我々は,大規模モデルのフルトレインタイム前にどのシーケンスを記憶するかを,低速トライアルの実行時の記憶挙動を外挿することによって予測する。
モデルとデータ間のメモリ化スコアの分布に関する新たな発見を提供する。
論文 参考訳(メタデータ) (2023-04-21T17:58:31Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。