Efficient Numerical Wave Propagation Enhanced By An End-to-End Deep Learning Model
- URL: http://arxiv.org/abs/2402.02304v5
- Date: Tue, 05 Nov 2024 21:27:42 GMT
- Title: Efficient Numerical Wave Propagation Enhanced By An End-to-End Deep Learning Model
- Authors: Luis Kaiser, Richard Tsai, Christian Klingenberg,
- Abstract summary: We present a novel unified system that integrates a numerical solver with a deep learning component into an end-to-end framework.
A stable and fast solver further allows the use of Parareal, a parallel-in-time algorithm to correct high-frequency wave components.
- Score: 0.0
- License:
- Abstract: In a variety of scientific and engineering domains, the need for high-fidelity and efficient solutions for high-frequency wave propagation holds great significance. Recent advances in wave modeling use sufficiently accurate fine solver outputs to train a neural network that enhances the accuracy of a fast but inaccurate coarse solver. In this paper we build upon the work of Nguyen and Tsai (2023) and present a novel unified system that integrates a numerical solver with a deep learning component into an end-to-end framework. In the proposed setting, we investigate refinements to the network architecture and data generation algorithm. A stable and fast solver further allows the use of Parareal, a parallel-in-time algorithm to correct high-frequency wave components. Our results show that the cohesive structure improves performance without sacrificing speed, and demonstrate the importance of temporal dynamics, as well as Parareal, for accurate wave propagation.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Wav-KAN: Wavelet Kolmogorov-Arnold Networks [3.38220960870904]
Wav-KAN is an innovative neural network architecture that leverages the Wavelet Kolmogorov-Arnold Networks (Wav-KAN) framework to enhance interpretability and performance.
Our results highlight the potential of Wav-KAN as a powerful tool for developing interpretable and high-performance neural networks.
arXiv Detail & Related papers (2024-05-21T14:36:16Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
Video frame is an important low-level computation vision task, which can increase frame rate for more fluent visual experience.
Existing methods have achieved great success by employing advanced motion models and synthesis networks.
WaveletVFI can reduce computation up to 40% while maintaining similar accuracy, making it perform more efficiently against other state-of-the-arts.
arXiv Detail & Related papers (2023-09-07T06:41:15Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
We propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver.
Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models.
PFNO admits higher computational efficiency on large-scale testing datasets, compared with the traditional finite-difference method.
arXiv Detail & Related papers (2022-09-25T22:25:57Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
We develop a prototype framework for learning general solutions using a recently developed machine learning paradigm called Neural Operator.
A trained Neural Operator can compute a solution in negligible time for any velocity structure or source location.
We illustrate the method with the 2D acoustic wave equation and demonstrate the method's applicability to seismic tomography.
arXiv Detail & Related papers (2021-08-11T19:17:39Z) - Gradient-free optimization of chaotic acoustics with reservoir computing [6.345523830122166]
We develop a versatile optimization method, which finds the design parameters that minimize time-averaged acoustic cost functionals.
The method is gradient-free, model-informed, and data-driven with reservoir computing based on echo state networks.
arXiv Detail & Related papers (2021-06-17T19:49:45Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.