Minusformer: Improving Time Series Forecasting by Progressively Learning Residuals
- URL: http://arxiv.org/abs/2402.02332v3
- Date: Mon, 17 Jun 2024 09:59:43 GMT
- Title: Minusformer: Improving Time Series Forecasting by Progressively Learning Residuals
- Authors: Daojun Liang, Haixia Zhang, Dongfeng Yuan, Bingzheng Zhang, Minggao Zhang,
- Abstract summary: We find that ubiquitous time series (TS) forecasting models are prone to severe overfitting.
We introduce a dual-stream and subtraction mechanism, which is a deep Boosting ensemble learning method.
The proposed method outperform existing state-of-the-art methods, yielding an average performance improvement of 11.9% across various datasets.
- Score: 14.741951369068877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we find that ubiquitous time series (TS) forecasting models are prone to severe overfitting. To cope with this problem, we embrace a de-redundancy approach to progressively reinstate the intrinsic values of TS for future intervals. Specifically, we introduce a dual-stream and subtraction mechanism, which is a deep Boosting ensemble learning method. And the vanilla Transformer is renovated by reorienting the information aggregation mechanism from addition to subtraction. Then, we incorporate an auxiliary output branch into each block of the original model to construct a highway leading to the ultimate prediction. The output of subsequent modules in this branch will subtract the previously learned results, enabling the model to learn the residuals of the supervision signal, layer by layer. This designing facilitates the learning-driven implicit progressive decomposition of the input and output streams, empowering the model with heightened versatility, interpretability, and resilience against overfitting. Since all aggregations in the model are minus signs, which is called Minusformer. Extensive experiments demonstrate the proposed method outperform existing state-of-the-art methods, yielding an average performance improvement of 11.9% across various datasets.The code has been released at https://github.com/Anoise/Minusformer.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
We propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model.
We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement.
Our method called FactorQVAE is the first method that combines optimization based disentanglement approaches with discrete representation learning.
arXiv Detail & Related papers (2024-09-23T09:33:53Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
We present a novel application of explainable AI (XAI) for root-causing performance degradation in machine learning models.
A single feature corruption can cause cascading feature, label and concept drifts.
We have successfully applied this technique to improve the reliability of models used in personalized advertising.
arXiv Detail & Related papers (2024-03-04T19:38:50Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - Generative Flows with Invertible Attentions [135.23766216657745]
We introduce two types of invertible attention mechanisms for generative flow models.
We exploit split-based attention mechanisms to learn the attention weights and input representations on every two splits of flow feature maps.
Our method provides invertible attention modules with tractable Jacobian determinants, enabling seamless integration of it at any positions of the flow-based models.
arXiv Detail & Related papers (2021-06-07T20:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.