Stereographic Spherical Sliced Wasserstein Distances
- URL: http://arxiv.org/abs/2402.02345v2
- Date: Sun, 9 Jun 2024 18:42:20 GMT
- Title: Stereographic Spherical Sliced Wasserstein Distances
- Authors: Huy Tran, Yikun Bai, Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio Diaz Martin, Soheil Kolouri,
- Abstract summary: We introduce a high-speed and highly parallelizable distance for comparing spherical measures using the stereographic projection and the generalized Radon transform.
We evaluate the performance of the proposed metrics and compare them with recent baselines in terms of both speed and accuracy.
- Score: 9.605542733966201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comparing spherical probability distributions is of great interest in various fields, including geology, medical domains, computer vision, and deep representation learning. The utility of optimal transport-based distances, such as the Wasserstein distance, for comparing probability measures has spurred active research in developing computationally efficient variations of these distances for spherical probability measures. This paper introduces a high-speed and highly parallelizable distance for comparing spherical measures using the stereographic projection and the generalized Radon transform, which we refer to as the Stereographic Spherical Sliced Wasserstein (S3W) distance. We carefully address the distance distortion caused by the stereographic projection and provide an extensive theoretical analysis of our proposed metric and its rotationally invariant variation. Finally, we evaluate the performance of the proposed metrics and compare them with recent baselines in terms of both speed and accuracy through a wide range of numerical studies, including gradient flows and self-supervised learning. Our code is available at https://github.com/mint-vu/s3wd.
Related papers
- Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
We introduce a new family of distances, relative-translation invariant Wasserstein distances ($RW_p$)
We show that $RW_p distances are also real distance metrics defined on the quotient set $mathcalP_p(mathbbRn)/sim$ invariant to distribution translations.
arXiv Detail & Related papers (2024-09-04T03:41:44Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction.
A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance.
We propose a novel metric for learning mesh deformation, defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach.
arXiv Detail & Related papers (2023-05-27T19:10:19Z) - Learning multiobjective rough terrain traversability [0.0]
We present a method that uses high-resolution topography data of rough terrain, and ground vehicle simulation, to predict traversability.
A deep neural network is trained to predict the traversability measures from the local heightmap and target speed.
We evaluate the model on laser-scanned forest terrains, previously unseen by the model.
arXiv Detail & Related papers (2022-03-30T14:31:43Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - Depth-based pseudo-metrics between probability distributions [1.1470070927586016]
We propose two new pseudo-metrics between continuous probability measures based on data depth and its associated central regions.
In contrast to the Wasserstein distance, the proposed pseudo-metrics do not suffer from the curse of dimensionality.
The regions-based pseudo-metric appears to be robust w.r.t. both outliers and heavy tails.
arXiv Detail & Related papers (2021-03-23T17:33:18Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
We propose a new formulation and learning strategy for computing the Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of the optimal transport (OT) problem, we derive a minimax problem whose saddle point is the Wasserstein geodesic.
We then parametrize the functions by deep neural networks and design a sample based bidirectional learning algorithm for training.
arXiv Detail & Related papers (2021-02-05T04:25:28Z) - Two-sample Test using Projected Wasserstein Distance [18.46110328123008]
We develop a projected Wasserstein distance for the two-sample test, a fundamental problem in statistics and machine learning.
A key contribution is to couple optimal projection to find the low dimensional linear mapping to maximize the Wasserstein distance between projected probability distributions.
arXiv Detail & Related papers (2020-10-22T18:08:58Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Distributional Sliced-Wasserstein and Applications to Generative
Modeling [27.014748003733544]
Sliced-Wasserstein distance (SW) and its variant, Max Sliced-Wasserstein distance (Max-SW) have been used widely in the recent years.
We propose a novel distance, named Distributional Sliced-Wasserstein distance (DSW)
We show that the DSW is a generalization of Max-SW, and it can be computed efficiently by searching for the optimal push-forward measure.
arXiv Detail & Related papers (2020-02-18T04:35:16Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.