論文の概要: A Paradigm for Potential Model Performance Improvement in Classification
and Regression Problems. A Proof of Concept
- arxiv url: http://arxiv.org/abs/2402.02354v1
- Date: Sun, 4 Feb 2024 05:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 20:27:57.907026
- Title: A Paradigm for Potential Model Performance Improvement in Classification
and Regression Problems. A Proof of Concept
- Title(参考訳): 分類・回帰問題におけるポテンシャルモデル性能向上のためのパラダイム
概念実証
- Authors: Francisco Javier Lobo-Cabrera
- Abstract要約: この手法では、属性間の関係を相互の関数として捉える複数の補助モデルを生成する。
このような情報は、ターゲット予測を強化する可能性があるデータセットに付加的な情報列を生成するのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A methodology that seeks to enhance model prediction performance is
presented. The method involves generating multiple auxiliary models that
capture relationships between attributes as a function of each other. Such
information serves to generate additional informative columns in the dataset
that can potentially enhance target prediction. A proof of case and related
code is provided.
- Abstract(参考訳): モデル予測性能の向上を目指す方法論を提示する。
この手法では、属性間の関係を相互の関数として捉える複数の補助モデルを生成する。
このような情報は、ターゲット予測を強化する可能性があるデータセットに付加的な情報列を生成するのに役立つ。
ケースの証明と関連するコードが提供される。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Embedding-based statistical inference on generative models [10.948308354932639]
生成モデルの埋め込みに基づく表現に関する結果を、古典的な統計的推論設定に拡張する。
類似」の概念の基盤として視点空間を用いることは、複数のモデルレベルの推論タスクに有効であることを示す。
論文 参考訳(メタデータ) (2024-10-01T22:28:39Z) - Inducing Semantic Grouping of Latent Concepts for Explanations: An
Ante-Hoc Approach [18.170504027784183]
我々は,潜伏状態を利用してモデルの異なる部分を適切に修正することにより,より良い説明が得られ,予測性能が向上することを示した。
また,2つの異なる自己スーパービジョン技術を用いて,考察対象の自己スーパービジョンのタイプに関連する意味ある概念を抽出する手法を提案した。
論文 参考訳(メタデータ) (2021-08-25T07:09:57Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Counterfactual Explanations for Arbitrary Regression Models [8.633492031855655]
ベイズ最適化に基づく対実的説明法(CFE)を提案する。
提案手法は,任意の回帰モデルと特徴空間や動作可能なリコースなどの制約をサポートする,グローバル収束探索アルゴリズムである。
論文 参考訳(メタデータ) (2021-06-29T09:53:53Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Cross-Modal Generative Augmentation for Visual Question Answering [34.9601948665926]
本稿では,複数のモダリティ間の相関を利用したデータ拡張生成モデルを提案する。
提案したモデルは,生成確率によって拡張データの信頼度を定量化し,下流パイプラインと共同して更新することができる。
論文 参考訳(メタデータ) (2021-05-11T04:51:26Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。