SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for
Autonomous Driving
- URL: http://arxiv.org/abs/2402.02519v1
- Date: Sun, 4 Feb 2024 15:07:49 GMT
- Title: SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for
Autonomous Driving
- Authors: Lu Zhang, Peiliang Li, Sikang Liu, Shaojie Shen
- Abstract summary: This paper presents a Simple and effIcient Motion Prediction baseLine (SIMPL) for autonomous vehicles.
We propose a compact and efficient global feature fusion module that performs directed message passing in a symmetric manner.
As a strong baseline, SIMPL exhibits highly competitive performance on Argoverse 1 & 2 motion forecasting benchmarks.
- Score: 27.776472262857045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a Simple and effIcient Motion Prediction baseLine (SIMPL)
for autonomous vehicles. Unlike conventional agent-centric methods with high
accuracy but repetitive computations and scene-centric methods with compromised
accuracy and generalizability, SIMPL delivers real-time, accurate motion
predictions for all relevant traffic participants. To achieve improvements in
both accuracy and inference speed, we propose a compact and efficient global
feature fusion module that performs directed message passing in a symmetric
manner, enabling the network to forecast future motion for all road users in a
single feed-forward pass and mitigating accuracy loss caused by viewpoint
shifting. Additionally, we investigate the continuous trajectory
parameterization using Bernstein basis polynomials in trajectory decoding,
allowing evaluations of states and their higher-order derivatives at any
desired time point, which is valuable for downstream planning tasks. As a
strong baseline, SIMPL exhibits highly competitive performance on Argoverse 1 &
2 motion forecasting benchmarks compared with other state-of-the-art methods.
Furthermore, its lightweight design and low inference latency make SIMPL highly
extensible and promising for real-world onboard deployment. We open-source the
code at https://github.com/HKUST-Aerial-Robotics/SIMPL.
Related papers
- Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Efficient Baselines for Motion Prediction in Autonomous Driving [7.608073471097835]
Motion Prediction (MP) of multiple surroundings agents is a crucial task in arbitrarily complex environments.
We aim to develop compact models using State-Of-The-Art (SOTA) techniques for MP, including attention mechanisms and GNNs.
arXiv Detail & Related papers (2023-09-06T22:18:16Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
Policies trained in simulation often fail when transferred to the real world.
Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering.
We propose a method for automatically tuning simulator system parameters to match the real world.
arXiv Detail & Related papers (2021-04-15T17:59:55Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - A Multi-Modal States based Vehicle Descriptor and Dilated Convolutional
Social Pooling for Vehicle Trajectory Prediction [3.131740922192114]
We propose a vehicle-descriptor based LSTM model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Each vehicle's multi-modal state information is employed as our model's input.
The validity of the overall model was verified over the NGSIM US-101 and I-80 datasets.
arXiv Detail & Related papers (2020-03-07T01:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.