Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning
- URL: http://arxiv.org/abs/2406.15819v2
- Date: Mon, 21 Oct 2024 15:07:13 GMT
- Title: Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning
- Authors: Qiushuo Hou, Matteo Zecchin, Sangwoo Park, Yunlong Cai, Guanding Yu, Kaushik Chowdhury, Osvaldo Simeone,
- Abstract summary: AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
- Score: 50.332027356848094
- License:
- Abstract: In modern wireless network architectures, such as O-RAN, artificial intelligence (AI)-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control. The AI "apps" are selected on the basis of contextual information such as network conditions, topology, traffic statistics, and design goals. The mapping between context and AI model parameters is ideally done in a zero-shot fashion via an automatic model selection (AMS) mapping that leverages only contextual information without requiring any current data. This paper introduces a general methodology for the online optimization of AMS mappings. Optimizing an AMS mapping is challenging, as it requires exposure to data collected from many different contexts. Therefore, if carried out online, this initial optimization phase would be extremely time consuming. A possible solution is to leverage a digital twin of the physical system to generate synthetic data from multiple simulated contexts. However, given that the simulator at the digital twin is imperfect, a direct use of simulated data for the optimization of the AMS mapping would yield poor performance when tested in the real system. This paper proposes a novel method for the online optimization of AMS mapping that corrects for the bias of the simulator by means of limited real data collected from the physical system. Experimental results for a graph neural network-based power control app demonstrate the significant advantages of the proposed approach.
Related papers
- Recursive Gaussian Process State Space Model [4.572915072234487]
We propose a new online GPSSM method with adaptive capabilities for both operating domains and GP hyper parameters.
Online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning.
Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method.
arXiv Detail & Related papers (2024-11-22T02:22:59Z) - Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks.
DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system.
Various AI research and standardization work is ongoing to optimize the use of DTN.
arXiv Detail & Related papers (2024-05-14T09:55:03Z) - Multi-Stream Cellular Test-Time Adaptation of Real-Time Models Evolving in Dynamic Environments [53.79708667153109]
Smart objects, notably autonomous vehicles, face challenges in critical local computations due to limited resources.
We propose a novel Multi-Stream Cellular Test-Time Adaptation setup where models adapt on the fly to a dynamic environment divided into cells.
We validate our methodology in the context of autonomous vehicles navigating across cells defined based on location and weather conditions.
arXiv Detail & Related papers (2024-04-27T15:00:57Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.