Neuromorphic hardware for sustainable AI data centers
- URL: http://arxiv.org/abs/2402.02521v2
- Date: Wed, 26 Jun 2024 20:46:24 GMT
- Title: Neuromorphic hardware for sustainable AI data centers
- Authors: Bernhard Vogginger, Amirhossein Rostami, Vaibhav Jain, Sirine Arfa, Andreas Hantsch, David Kappel, Michael Schäfer, Ulrike Faltings, Hector A. Gonzalez, Chen Liu, Christian Mayr, Wolfgang Maaß,
- Abstract summary: Neuromorphic hardware takes inspiration from how the brain processes information.
Despite its potential, neuromorphic hardware has not found its way into commercial AI data centers.
This article aims to increase awareness of the challenges of integrating neuromorphic hardware into data centers.
- Score: 3.011658333753524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As humans advance toward a higher level of artificial intelligence, it is always at the cost of escalating computational resource consumption, which requires developing novel solutions to meet the exponential growth of AI computing demand. Neuromorphic hardware takes inspiration from how the brain processes information and promises energy-efficient computing of AI workloads. Despite its potential, neuromorphic hardware has not found its way into commercial AI data centers. In this article, we try to analyze the underlying reasons for this and derive requirements and guidelines to promote neuromorphic systems for efficient and sustainable cloud computing: We first review currently available neuromorphic hardware systems and collect examples where neuromorphic solutions excel conventional AI processing on CPUs and GPUs. Next, we identify applications, models and algorithms which are commonly deployed in AI data centers as further directions for neuromorphic algorithms research. Last, we derive requirements and best practices for the hardware and software integration of neuromorphic systems into data centers. With this article, we hope to increase awareness of the challenges of integrating neuromorphic hardware into data centers and to guide the community to enable sustainable and energy-efficient AI at scale.
Related papers
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - A perspective on physical reservoir computing with nanomagnetic devices [1.9007022664972197]
We focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for computation with spintronic devices.
We review technologies and methods for developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used.
arXiv Detail & Related papers (2022-12-09T13:43:21Z) - Integration of Neuromorphic AI in Event-Driven Distributed Digitized
Systems: Concepts and Research Directions [0.2746383075956081]
We describe the current landscape of neuromorphic computing, focusing on characteristics that pose integration challenges.
We propose a microservice-based framework for neuromorphic systems integration, consisting of a neuromorphic-system proxy.
We also present concepts that could serve as a basis for the realization of this framework.
arXiv Detail & Related papers (2022-10-20T12:09:29Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z) - Cryogenic Neuromorphic Hardware [5.399870108760824]
The concept of implementing neuromorphic computing systems in cryogenic temperature has garnered immense attention.
Here we provide a comprehensive overview of the reported cryogenic neuromorphic hardware.
arXiv Detail & Related papers (2022-03-25T20:44:02Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements.
This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices.
A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs.
arXiv Detail & Related papers (2020-07-10T20:54:42Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.