論文の概要: Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks
- arxiv url: http://arxiv.org/abs/2402.02551v3
- Date: Wed, 15 May 2024 07:31:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 17:41:32.209985
- Title: Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks
- Title(参考訳): 非繰り返しリーチ作業のためのロボットマニピュレータにおけるDeepRLとロバスト低レベル制御の統合
- Authors: Mehdi Heydari Shahna, Seyed Adel Alizadeh Kolagar, Jouni Mattila,
- Abstract要約: ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability, which may pose challenges in ensuring stability and safety. To address these issues, we propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy, all while actively engaging in the learning phase through interactions with the environment. This approach circumvents the control performance and complexities associated with computations while addressing nonrepetitive reaching tasks in the presence of obstacles. First, a model-free DRL agent is employed to plan velocity-bounded motion for a manipulator with 'n' degrees of freedom (DoF), ensuring collision avoidance for the end-effector through joint-level reasoning. The generated reference motion is then input into a robust subsystem-based adaptive controller, which produces the necessary torques, while the cuckoo search optimization (CSO) algorithm enhances control gains to minimize the stabilization and tracking error in the steady state. This approach guarantees robustness and uniform exponential convergence in an unfamiliar environment, despite the presence of uncertainties and disturbances. Theoretical assertions are validated through the presentation of simulation outcomes.
- Abstract(参考訳): ロボット工学において、現代の戦略は、複雑なブラックボックスの性質と解釈可能性の欠如が特徴であり、安定性と安全性の確保に困難をもたらす可能性がある。
これらの課題に対処するために, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 環境との相互作用を通じて学習フェーズに積極的に関与しながら, 新たな低レベル制御戦略を統合することを提案する。
この手法は,非反復的到達タスクに障害が存在する場合に対処しながら,計算の制御性能と複雑さを回避している。
第一に、モデルフリーDRLエージェントを用いて「n」自由度(DoF)を有するマニピュレータの速度境界運動を計画し、結合レベル推論によるエンドエフェクタの衝突回避を確保する。
生成された参照動作は、必要なトルクを生成する頑健なサブシステムベースの適応制御器に入力され、一方、カッコウ探索最適化(CSO)アルゴリズムは、安定状態における安定化と追跡誤差を最小限に抑えるために制御ゲインを強化する。
このアプローチは、不確実性や乱れがあるにもかかわらず、不慣れな環境での堅牢性と一様指数収束を保証する。
理論的な主張はシミュレーション結果の提示によって検証される。
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
本稿では,DJI行列100のための非線形モデル予測制御(NMPC)フレームワークを提案する。
このフレームワークは様々なトラジェクトリタイプをサポートし、厳密な操作の精度を制御するためにペナルティベースのコスト関数を採用している。
論文 参考訳(メタデータ) (2024-10-03T17:50:19Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
論文 参考訳(メタデータ) (2024-03-31T09:25:28Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
本研究では,空中すべり作業に対する学習に基づく適応制御手法を提案する。
提案するコントローラ構造は,データ駆動制御とモデルベース制御を組み合わせたものである。
美術品間相互作用制御手法の微調整状態と比較して,追従誤差の低減と外乱拒否の改善を実現した。
論文 参考訳(メタデータ) (2022-06-28T16:28:59Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Imitation Learning for Robust and Safe Real-time Motion Planning: A
Contraction Theory Approach [9.35511513240868]
LAG-ROSは、境界外乱によって乱される安全臨界非線形システムのリアルタイムロバストな動作計画アルゴリズムである。
LAG-ROSはリアルタイム計算のためのより速い実行の速度のより高い制御性能そしてタスクの成功率を達成します。
論文 参考訳(メタデータ) (2021-02-25T03:47:15Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。