論文の概要: Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance
- arxiv url: http://arxiv.org/abs/2404.00623v1
- Date: Sun, 31 Mar 2024 09:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:40:27.602077
- Title: Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance
- Title(参考訳): 強化学習に基づく衝突回避における外感知覚のための変分オートエンコーダ
- Authors: Thomas Nakken Larsen, Eirik Runde Barlaug, Adil Rasheed,
- Abstract要約: Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern control systems are increasingly turning to machine learning algorithms to augment their performance and adaptability. Within this context, Deep Reinforcement Learning (DRL) has emerged as a promising control framework, particularly in the domain of marine transportation. Its potential for autonomous marine applications lies in its ability to seamlessly combine path-following and collision avoidance with an arbitrary number of obstacles. However, current DRL algorithms require disproportionally large computational resources to find near-optimal policies compared to the posed control problem when the searchable parameter space becomes large. To combat this, our work delves into the application of Variational AutoEncoders (VAEs) to acquire a generalized, low-dimensional latent encoding of a high-fidelity range-finding sensor, which serves as the exteroceptive input to a DRL agent. The agent's performance, encompassing path-following and collision avoidance, is systematically tested and evaluated within a stochastic simulation environment, presenting a comprehensive exploration of our proposed approach in maritime control systems.
- Abstract(参考訳): 現代の制御システムは、そのパフォーマンスと適応性を高めるために、機械学習アルゴリズムに変わりつつある。
この文脈の中で、深層強化学習(DRL)は、特に海洋輸送の領域において、有望な制御の枠組みとして現れている。
自律的な海洋応用の可能性は、経路追従と衝突回避を任意の数の障害物とシームレスに結合する能力にある。
しかし、現在のDRLアルゴリズムは、探索可能なパラメータ空間が大きくなると仮定された制御問題と比較して、ほぼ最適のポリシーを見つけるために、不均等な計算資源を必要とする。
これに対抗するため,我々の研究は変分オートエンコーダ(VAEs)を用いて,DRLエージェントへの外部受容入力として機能する高忠実レンジフィンディングセンサの一般化された低次元ラテント符号化を取得する。
経路追従および衝突回避を含むエージェントの性能を確率的シミュレーション環境で系統的に評価し, 海洋制御システムにおける提案手法の総合的な検討を行った。
関連論文リスト
- Collision Avoidance Verification of Multiagent Systems with Learned Policies [9.550601011551024]
本稿では,マルチエージェントフィードバックループ(MA-NFL)の衝突回避特性を検証するための後方到達性に基づくアプローチを提案する。
私たちは多くの不確実性を説明しており、現実のシナリオとよく一致しています。
提案アルゴリズムは,MA-NFLの衝突回避アルゴリズムを模倣するエージェントを用いて,衝突回避特性を検証できることを示す。
論文 参考訳(メタデータ) (2024-03-05T20:36:26Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - RLaGA: A Reinforcement Learning Augmented Genetic Algorithm For
Searching Real and Diverse Marker-Based Landing Violations [0.7709288517758135]
安全性を確保するために、実際の世界にデプロイする前に、自動ランディングシステムを完全にテストすることが重要です。
本稿では、強化学習(RL)拡張検索ベースのテストフレームワークであるRLaGAを提案する。
本手法は, 最大22.19%の違反事例を発生し, 発生した違反事例の多様性をほぼ2倍に向上させる。
論文 参考訳(メタデータ) (2023-10-11T10:54:01Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Collision-Free Flocking with a Dynamic Squad of Fixed-Wing UAVs Using
Deep Reinforcement Learning [2.555094847583209]
深層強化学習(DRL)による分散型リーダ・フォロワリング制御問題に対処する。
我々は,すべてのフォロワーに対して共有制御ポリシーを学習するための新しい強化学習アルゴリズムCACER-IIを提案する。
その結果、可変長系状態を固定長埋め込みベクトルに符号化することができ、学習されたDRLポリシーをフォロワーの数や順序と独立にすることができる。
論文 参考訳(メタデータ) (2021-01-20T11:23:35Z) - Deep Reinforcement Learning Controller for 3D Path-following and
Collision Avoidance by Autonomous Underwater Vehicles [0.0]
自律型水中車両のような複雑なシステムでは、意思決定は簡単ではない。
本稿では,最先端のDeep Reinforcement Learning(DRL)技術を用いた解を提案する。
本研究は,自律走行車システムにおける人間レベルの意思決定に向けた衝突回避と経路追従におけるDRLの実現可能性を示すものである。
論文 参考訳(メタデータ) (2020-06-17T11:54:53Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。