Foundation Model Makes Clustering A Better Initialization For Cold-Start Active Learning
- URL: http://arxiv.org/abs/2402.02561v2
- Date: Wed, 27 Mar 2024 05:23:40 GMT
- Title: Foundation Model Makes Clustering A Better Initialization For Cold-Start Active Learning
- Authors: Han Yuan, Chuan Hong,
- Abstract summary: We propose to integrate foundation models with clustering methods to select samples for cold-start active learning.
Foundation models refer to those trained on massive datasets by the self-supervised paradigm.
For a comprehensive comparison, we included a classic ImageNet-supervised model to acquire embeddings.
- Score: 5.609241010973952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning selects the most informative samples from the unlabelled dataset to annotate in the context of a limited annotation budget. While numerous methods have been proposed for subsequent sample selection based on an initialized model, scant attention has been paid to the indispensable phase of active learning: selecting samples for model cold-start initialization. Most of the previous studies resort to random sampling or naive clustering. However, random sampling is prone to fluctuation, and naive clustering suffers from convergence speed, particularly when dealing with high-dimensional data such as imaging data. In this work, we propose to integrate foundation models with clustering methods to select samples for cold-start active learning initialization. Foundation models refer to those trained on massive datasets by the self-supervised paradigm and capable of generating informative and compacted embeddings for various downstream tasks. Leveraging these embeddings to replace raw features such as pixel values, clustering quickly converges and identifies better initial samples. For a comprehensive comparison, we included a classic ImageNet-supervised model to acquire embeddings. Experiments on two clinical tasks of image classification and segmentation demonstrated that foundation model-based clustering efficiently pinpointed informative initial samples, leading to models showcasing enhanced performance than the baseline methods. We envisage that this study provides an effective paradigm for future cold-start active learning.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
We propose an adaptive intra-class variation contrastive learning algorithm for unsupervised Re-ID, called AdaInCV.
The algorithm quantitatively evaluates the learning ability of the model for each class by considering the intra-class variations after clustering.
To be more specific, two new strategies are proposed: Adaptive Sample Mining (AdaSaM) and Adaptive Outlier Filter (AdaOF)
arXiv Detail & Related papers (2024-04-06T15:48:14Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Non-iterative optimization of pseudo-labeling thresholds for training
object detection models from multiple datasets [2.1485350418225244]
We propose a non-iterative method to optimize pseudo-labeling thresholds for learning object detection from a collection of low-cost datasets.
We experimentally demonstrate that our proposed method achieves an mAP comparable to that of grid search on the COCO and VOC datasets.
arXiv Detail & Related papers (2022-10-19T00:31:34Z) - ST-CoNAL: Consistency-Based Acquisition Criterion Using Temporal
Self-Ensemble for Active Learning [7.94190631530826]
Active learning (AL) is becoming increasingly important to maximize the efficiency of the training process.
We present an AL algorithm, namely student-teacher consistency-based AL (ST-CoNAL)
Experiments conducted for image classification tasks on CIFAR-10, CIFAR-100, Caltech-256, and Tiny ImageNet datasets demonstrate that the proposed STCoNAL significantly better performance than the existing acquisition methods.
arXiv Detail & Related papers (2022-07-05T17:25:59Z) - Towards General and Efficient Active Learning [20.888364610175987]
Active learning aims to select the most informative samples to exploit limited annotation budgets.
We propose a novel general and efficient active learning (GEAL) method in this paper.
Our method can conduct data selection processes on different datasets with a single-pass inference of the same model.
arXiv Detail & Related papers (2021-12-15T08:35:28Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Set Based Stochastic Subsampling [85.5331107565578]
We propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an textitarbitrary downstream task network.
We show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification.
arXiv Detail & Related papers (2020-06-25T07:36:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.