Non-iterative optimization of pseudo-labeling thresholds for training
object detection models from multiple datasets
- URL: http://arxiv.org/abs/2210.10221v1
- Date: Wed, 19 Oct 2022 00:31:34 GMT
- Title: Non-iterative optimization of pseudo-labeling thresholds for training
object detection models from multiple datasets
- Authors: Yuki Tanaka, Shuhei M. Yoshida, Makoto Terao
- Abstract summary: We propose a non-iterative method to optimize pseudo-labeling thresholds for learning object detection from a collection of low-cost datasets.
We experimentally demonstrate that our proposed method achieves an mAP comparable to that of grid search on the COCO and VOC datasets.
- Score: 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a non-iterative method to optimize pseudo-labeling thresholds for
learning object detection from a collection of low-cost datasets, each of which
is annotated for only a subset of all the object classes. A popular approach to
this problem is first to train teacher models and then to use their confident
predictions as pseudo ground-truth labels when training a student model. To
obtain the best result, however, thresholds for prediction confidence must be
adjusted. This process typically involves iterative search and repeated
training of student models and is time-consuming. Therefore, we develop a
method to optimize the thresholds without iterative optimization by maximizing
the $F_\beta$-score on a validation dataset, which measures the quality of
pseudo labels and can be measured without training a student model. We
experimentally demonstrate that our proposed method achieves an mAP comparable
to that of grid search on the COCO and VOC datasets.
Related papers
- LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training [2.762397703396293]
Loss Prediction Loss with Gradient Norm (LPLgrad) is designed to quantify model uncertainty effectively and improve the accuracy of image classification tasks.
LPLgrad operates in two distinct phases: (i) em Training Phase aims to predict the loss for input features by jointly training a main model and an auxiliary model.
This dual-model approach enhances the ability to extract complex input features and learn intrinsic patterns from the data effectively.
arXiv Detail & Related papers (2024-11-20T18:12:59Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Adaptive Self-Training for Object Detection [13.07105239116411]
We introduce our method Self-Training for Object Detection (ASTOD)
ASTOD determines without cost a threshold value based directly on the ground value of the score histogram.
We use different views of the unlabeled images during the pseudo-labeling step to reduce the number of missed predictions.
arXiv Detail & Related papers (2022-12-07T15:10:40Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - ST-CoNAL: Consistency-Based Acquisition Criterion Using Temporal
Self-Ensemble for Active Learning [7.94190631530826]
Active learning (AL) is becoming increasingly important to maximize the efficiency of the training process.
We present an AL algorithm, namely student-teacher consistency-based AL (ST-CoNAL)
Experiments conducted for image classification tasks on CIFAR-10, CIFAR-100, Caltech-256, and Tiny ImageNet datasets demonstrate that the proposed STCoNAL significantly better performance than the existing acquisition methods.
arXiv Detail & Related papers (2022-07-05T17:25:59Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.