論文の概要: Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
- arxiv url: http://arxiv.org/abs/2402.02563v2
- Date: Thu, 23 May 2024 14:20:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-25 07:09:37.125841
- Title: Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
- Title(参考訳): Synergy-of-Thoughts:ハイブリッド言語モデルにおける効率的な推論
- Authors: Yu Shang, Yu Li, Fengli Xu, Yong Li,
- Abstract要約: 大規模言語モデル(LLM)は、幅広いタスクにおいて驚くべき創発的能力を示してきたが、複雑な推論問題に対処する上ではまだ課題に直面している。
人間の認知の二重過程理論に触発され,効率的な推論のためにハイブリッドLLMの相乗的ポテンシャルを解き放つために,SoT(Synergy of Thoughts)を提案する。
SoTはトークンのコストを38.3%-75.1%削減し、最先端の推論精度と解の多様性を同時に達成する。
- 参考スコア(独自算出の注目度): 19.466985579720507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but still face challenges in handling complex reasoning problems. Previous works like chain-of-thought (CoT) and tree-of-thoughts (ToT) have predominately focused on enhancing accuracy, but overlook the rapidly increasing token cost, which could be particularly problematic for open-ended real-world tasks with huge solution spaces. Motivated by the dual process theory of human cognition, we propose "Synergy of Thoughts" (SoT) to unleash the synergistic potential of hybrid LLMs for efficient reasoning. By default, SoT uses smaller-scale language models to generate multiple low-cost reasoning thoughts, which resembles the parallel intuitions produced by System 1. If these intuitions exhibit conflicts, SoT will invoke the reflective reasoning of scaled-up language models to emulate the intervention of System 2, which will override the intuitive thoughts and rectify the reasoning process. This framework is model-agnostic and training-free, which can be flexibly implemented with various off-the-shelf LLMs. Experiments on six representative reasoning tasks show that SoT substantially reduces the token cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity. Notably, the average token cost reduction on open-ended tasks reaches up to 69.1%. Code repo with all prompts will be released upon publication.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いタスクにおいて驚くべき創発的能力を示してきたが、複雑な推論問題に対処する上ではまだ課題に直面している。
チェーン・オブ・シント(CoT)やツリー・オブ・シント(ToT)といったこれまでの作業は、精度の向上に重点を置いていたが、トークンコストの急激な増加を見落としている。
人間の認知の二重過程理論に触発され,効率的な推論のためにハイブリッドLLMの相乗的ポテンシャルを解き放つために,SoT(Synergy of Thoughts)を提案する。
デフォルトでは、SoTはより小規模の言語モデルを使用して、System 1の並列直観に類似した複数の低コストな推論思考を生成する。
これらの直観が矛盾を示すならば、SoTはシステム2の介入をエミュレートするためにスケールアップされた言語モデルの反射的推論を起動し、直感的な思考をオーバーライドし、推論プロセスの修正を行う。
このフレームワークはモデルに依存しないトレーニングフリーで、様々な既製のLCMで柔軟に実装できる。
6つの代表的な推論タスクの実験では、SoTはトークンのコストを38.3%-75.1%削減し、最先端の推論精度と解の多様性を同時に達成している。
特に、オープンエンドタスクの平均トークンコストの削減は69.1%に達する。
すべてのプロンプトによるコードレポジトリは、公開時に公開される。
関連論文リスト
- LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception [105.78609483419115]
我々はLongPerceptualThoughtsを紹介した。これは知覚タスクのための30Kの長所のトレースを持つ新しい合成データセットである。
本稿では,検証可能な複数の質問を最初に合成する新しい3段階データ合成フレームワークを提案する。
既存の視覚的推論データ生成手法よりも顕著な改善が示された。
論文 参考訳(メタデータ) (2025-04-21T18:10:38Z) - Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging [17.038807261969033]
Long-to-Short (L2S) 推論は推論深度と実用効率のバランスをとることを目的としている。
モデルマージは、System 1モデルの迅速な思考能力とSystem 2モデルの方法論的推論を統合することで、コスト効率が高く堅牢な代替手段を提供する。
実験の結果,モデルマージにより平均応答長を最大55%削減できることがわかった。
論文 参考訳(メタデータ) (2025-03-26T15:34:37Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
我々は,新しいプロンプトフレームワークであるSketch-of-Thought(SoT)を紹介する。
認知に触発された推論パラダイムと言語制約を組み合わせることでトークンの使用を最小化する。
SoTは、無視できる精度の影響でトークンを76%削減する。
論文 参考訳(メタデータ) (2025-03-07T06:57:17Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N選択は、大規模言語モデルの推論性能を改善するための重要なテクニックである。
本稿では,外部報酬モデルを必要とすることなく,応答品質を推定する新規かつ効率的な指標である自己確実性を提案する。
本研究は, LLM推論能力を向上させるための実用的で効率的な方法として, 自己確実性を確立した。
論文 参考訳(メタデータ) (2025-02-25T19:08:07Z) - Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs [86.79757571440082]
OpenAIのo1のような大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な能力を示している。
我々は、o1-like LLMがしばしば異なる理性的思考を切り替える、という現象を特定する。
本稿では,思考間の早期移行を回避できる思考切替ペナルティTIPを用いた復号戦略を提案する。
論文 参考訳(メタデータ) (2025-01-30T18:58:18Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
我々はフォレスト・オブ・サート(FoT)と呼ばれる新しい推論フレームワークを提案する。
FoTは複数の推論木を統合し、複雑な論理問題を解くために集合的な意思決定を活用する。
FoTは、最も関連性の高い推論パスを選択するためにスパースアクティベーション戦略を採用し、効率と精度の両方を改善している。
論文 参考訳(メタデータ) (2024-12-12T09:01:18Z) - Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning [0.0]
反復的人間のエンゲージメントは、大規模言語モデル(LLM)の高度な言語処理能力を活用するための一般的かつ効果的な手段である。
思考の反復(IoT)フレームワークを提案する。
静的アプローチや半静的アプローチとは異なり、IoTは進化するコンテキストに基づいて推論パスを動的に適応する。
論文 参考訳(メタデータ) (2024-09-19T09:44:17Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
思考の微調整(cot-finetuning)の連鎖は、小さな言語モデル(SLM)を特定のタスクに対するパフォーマンス向上の推論能力で実現することを目的としている。
既存のコトファインタニング法の多くは事前に考えられたメカニズムを採用しており、SLMは答えを出す前に理性を生成することができる。
このメカニズムにより、SLMは複雑な質問を分析して考えることができるが、答えの正しさは論理的に小さな誤りに非常に敏感になる。
理性よりも先に回答を生成するための頑健な後思考機構を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:19:27Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Generating Chain-of-Thoughts with a Pairwise-Comparison Approach to Searching for the Most Promising Intermediate Thought [70.30423016640749]
CoT法(Chain-of- Thoughts)は、大規模言語モデルにステップバイステップの推論を誘導し、単純から複雑への問題解決を可能にする手法である。
大規模言語モデル (LLMs) による評価は、一般的にうるさく、信頼できないものであり、将来有望な中間的思考を選択する際の生成過程を誤解させる可能性がある。
本稿では,Vapnikの原理を動機として,ポイントワイドスコアではなくペアワイズ比較評価を用いて,有望な中間思考を探索する。
論文 参考訳(メタデータ) (2024-02-10T09:51:03Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
大規模言語モデル(LLM)は、最近、Chain-of-Thoughtテクニックによる複雑な推論タスクにおいて大きな進歩を遂げました。
本稿では,問題解決時のクロスモデル通信を可能にする新しいフレームワークであるExchange-of-Thought (EoT)を提案する。
論文 参考訳(メタデータ) (2023-12-04T11:53:56Z) - Everything of Thoughts: Defying the Law of Penrose Triangle for Thought
Generation [42.472954457731355]
本稿では,既存の思考パラダイムの「ペンローズ三角形」の法則に反する,思考のすべて(XoT)と呼ばれる新しい思考促進手法を紹介する。
XoTは、事前訓練された強化学習とモンテカルロ木探索(MCTS)を活用して、外部ドメイン知識を思考に組み込む。
我々は,ゲーム24,8-Puzzle,Pocket Cubeなど,難解な複数解問題に対するXoTの評価を行った。
論文 参考訳(メタデータ) (2023-11-07T12:30:36Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
本稿では,OlaGPTと呼ばれる新しいインテリジェントなフレームワークを紹介する。
OlaGPTは認知アーキテクチャの枠組みを慎重に研究し、人間の認知の特定の側面をシミュレートすることを提案する。
このフレームワークは、注意、記憶、推論、学習、および対応するスケジューリングと意思決定メカニズムを含む、異なる認知モジュールの近似を含む。
論文 参考訳(メタデータ) (2023-05-23T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。