論文の概要: Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
- arxiv url: http://arxiv.org/abs/2402.02563v4
- Date: Sat, 24 Aug 2024 14:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 00:26:06.577507
- Title: Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
- Title(参考訳): Synergy-of-Thoughts:ハイブリッド言語モデルにおける効率的な推論
- Authors: Yu Shang, Yu Li, Fengli Xu, Yong Li,
- Abstract要約: 大規模言語モデル(LLM)は、広範囲のタスクにおいて顕著な創発能力を示しているが、関連する高価なAPIコストは、実際のアプリケーションを大幅に制限している。
本稿では,異なるスケールのハイブリッドLLMの相乗的ポテンシャルを効率的に推論するために,「思考のシネルギー」を提案する。
SoTはAPIコストを38.3%-75.1%削減し、最先端の推論精度とソリューションの多様性を同時に達成している。
- 参考スコア(独自算出の注目度): 19.466985579720507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but the associated expensive API cost greatly limits the real application. Previous works like chain-of-thought (CoT) and tree-of-thoughts (ToT) have predominately focused on enhancing accuracy, but overlook the rapidly increasing API cost, which could be particularly problematic for open-ended real-world tasks with huge solution spaces. Motivated by the dual process theory of human cognition, we propose "Synergy of Thoughts"(SoT) to unleash the synergistic potential of hybrid LLMs with different scales for efficient reasoning. By default, SoT uses smaller-scale language models to generate multiple low-cost intuitive thoughts, which resembles the parallel intuitions produced by System 1. We then design a confidence evaluator where the intuitive thoughts are cross-evaluated and introduce a controllable threshold mechanism to decide their mutual conflict. If these intuitive thoughts exhibit conflicts, SoT will invoke the reflective reasoning of scaled-up language models to emulate the intervention of System 2, which will override the intuitive thoughts and rectify the reasoning results. This framework is model-agnostic and training-free, which can be flexibly implemented with various off-the-shelf LLMs. Experiments on six representative reasoning tasks show that SoT substantially reduces the API cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity. Notably, the average token cost reduction on open-ended tasks reaches up to 69.1%.
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲のタスクにおいて顕著な創発能力を示しているが、関連する高価なAPIコストは、実際のアプリケーションを大幅に制限している。
チェーン・オブ・シント(CoT)やツリー・オブ・シント(ToT)といったこれまでの作業は、精度の向上に重点を置いていたが、APIコストの急激な増加を見落としている。
人間の認知の二重過程理論に触発されて、効率的な推論のために、異なるスケールのハイブリッドLLMの相乗的ポテンシャルを解き放つために、「思考のシネルギー」(SoT)を提案する。
デフォルトでは、SoTはより小規模の言語モデルを使用して、System 1の並列直感に類似した、低コストで直感的な思考を生成する。
次に、直感的思考を相互評価する信頼度評価器を設計し、相互の対立を決定するための制御可能なしきい値機構を導入する。
これらの直感的な思考が矛盾を示す場合、SoTはシステム2の介入をエミュレートするためにスケールアップされた言語モデルの反射的推論を実行し、直観的な思考をオーバーライドし、推論結果を修正します。
このフレームワークはモデルに依存しないトレーニングフリーで、様々な既製のLCMで柔軟に実装できる。
6つの代表的な推論タスクの実験では、SoTはAPIコストを38.3%-75.1%削減し、最先端の推論精度とソリューションの多様性を同時に達成している。
特に、オープンエンドタスクの平均トークンコストの削減は69.1%に達する。
関連論文リスト
- Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning [0.0]
反復的人間のエンゲージメントは、大規模言語モデル(LLM)の高度な言語処理能力を活用するための一般的かつ効果的な手段である。
思考の反復(IoT)フレームワークを提案する。
静的アプローチや半静的アプローチとは異なり、IoTは進化するコンテキストに基づいて推論パスを動的に適応する。
論文 参考訳(メタデータ) (2024-09-19T09:44:17Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
思考の微調整(cot-finetuning)の連鎖は、小さな言語モデル(SLM)を特定のタスクに対するパフォーマンス向上の推論能力で実現することを目的としている。
既存のコトファインタニング法の多くは事前に考えられたメカニズムを採用しており、SLMは答えを出す前に理性を生成することができる。
このメカニズムにより、SLMは複雑な質問を分析して考えることができるが、答えの正しさは論理的に小さな誤りに非常に敏感になる。
理性よりも先に回答を生成するための頑健な後思考機構を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:19:27Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Generating Chain-of-Thoughts with a Pairwise-Comparison Approach to Searching for the Most Promising Intermediate Thought [70.30423016640749]
CoT法(Chain-of- Thoughts)は、大規模言語モデルにステップバイステップの推論を誘導し、単純から複雑への問題解決を可能にする手法である。
大規模言語モデル (LLMs) による評価は、一般的にうるさく、信頼できないものであり、将来有望な中間的思考を選択する際の生成過程を誤解させる可能性がある。
本稿では,Vapnikの原理を動機として,ポイントワイドスコアではなくペアワイズ比較評価を用いて,有望な中間思考を探索する。
論文 参考訳(メタデータ) (2024-02-10T09:51:03Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
大規模言語モデル(LLM)は、最近、Chain-of-Thoughtテクニックによる複雑な推論タスクにおいて大きな進歩を遂げました。
本稿では,問題解決時のクロスモデル通信を可能にする新しいフレームワークであるExchange-of-Thought (EoT)を提案する。
論文 参考訳(メタデータ) (2023-12-04T11:53:56Z) - Everything of Thoughts: Defying the Law of Penrose Triangle for Thought
Generation [42.472954457731355]
本稿では,既存の思考パラダイムの「ペンローズ三角形」の法則に反する,思考のすべて(XoT)と呼ばれる新しい思考促進手法を紹介する。
XoTは、事前訓練された強化学習とモンテカルロ木探索(MCTS)を活用して、外部ドメイン知識を思考に組み込む。
我々は,ゲーム24,8-Puzzle,Pocket Cubeなど,難解な複数解問題に対するXoTの評価を行った。
論文 参考訳(メタデータ) (2023-11-07T12:30:36Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
本稿では,OlaGPTと呼ばれる新しいインテリジェントなフレームワークを紹介する。
OlaGPTは認知アーキテクチャの枠組みを慎重に研究し、人間の認知の特定の側面をシミュレートすることを提案する。
このフレームワークは、注意、記憶、推論、学習、および対応するスケジューリングと意思決定メカニズムを含む、異なる認知モジュールの近似を含む。
論文 参考訳(メタデータ) (2023-05-23T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。