論文の概要: DenseFormer: Enhancing Information Flow in Transformers via Depth Weighted Averaging
- arxiv url: http://arxiv.org/abs/2402.02622v2
- Date: Thu, 21 Mar 2024 10:57:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 19:17:37.191957
- Title: DenseFormer: Enhancing Information Flow in Transformers via Depth Weighted Averaging
- Title(参考訳): DenseFormer: 深さ重み付け平均化によるトランスフォーマーの情報フロー向上
- Authors: Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, Martin Jaggi,
- Abstract要約: 我々はDenseFormerを提案する。DenseFormerは、モデルのサイズを増大させることなく、モデルの難易度を向上する標準アーキテクチャの簡単な修正である。
提案手法は,現在および過去の表現の重み付き平均を計算する,各変圧器ブロックの後の加算平均ステップに依存する。
実験によると、DenseFormerはよりデータ効率が高く、より深いトランスフォーマーモデルと同じ難易度に達する。
- 参考スコア(独自算出の注目度): 34.643717080240584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transformer architecture by Vaswani et al. (2017) is now ubiquitous across application domains, from natural language processing to speech processing and image understanding. We propose DenseFormer, a simple modification to the standard architecture that improves the perplexity of the model without increasing its size -- adding a few thousand parameters for large-scale models in the 100B parameters range. Our approach relies on an additional averaging step after each transformer block, which computes a weighted average of current and past representations -- we refer to this operation as Depth-Weighted-Average (DWA). The learned DWA weights exhibit coherent patterns of information flow, revealing the strong and structured reuse of activations from distant layers. Experiments demonstrate that DenseFormer is more data efficient, reaching the same perplexity of much deeper transformer models, and that for the same perplexity, these new models outperform transformer baselines in terms of memory efficiency and inference time.
- Abstract(参考訳): Vaswani et al (2017)によるトランスフォーマーアーキテクチャは、自然言語処理から音声処理、画像理解に至るまで、アプリケーション領域で広く使われている。
DenseFormerは,100Bのパラメータ範囲で大規模なモデルに対する数千のパラメータを追加することで,モデルのサイズを増大させることなく,モデルの複雑度を改善する,標準アーキテクチャの簡単な修正である。
提案手法は,各変圧器ブロックの後の付加的な平均化ステップに依存し,この演算をDWA(Depth-Weighted-Average)と呼ぶ。
学習したDWA重みは情報フローのコヒーレントなパターンを示し、遠い層からの活性化の強く構造化された再利用を明らかにする。
実験により、DenseFormerはよりデータ効率が高く、より深いトランスフォーマーモデルと同じパープレキシティに達し、同じパープレキシティに対して、これらの新しいモデルはメモリ効率と推論時間の観点からトランスフォーマーベースラインを上回っていることが示された。
関連論文リスト
- Re-Parameterization of Lightweight Transformer for On-Device Speech Emotion Recognition [10.302458835329539]
軽量トランスフォーマーモデルの性能向上のための新しい手法であるTransformer Re-パラメータ化を導入する。
実験の結果,提案手法は軽量トランスフォーマーの性能を常に改善し,大規模モデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-11-14T10:36:19Z) - Dynamic Diffusion Transformer [67.13876021157887]
Diffusion Transformer (DiT) は優れた性能を示したが、かなりの計算コストに悩まされている。
本研究では,動的拡散変換器 (DyDiT) を提案する。
3%の微調整により,DiT-XLのFLOPを51%削減し,生成を1.73高速化し,ImageNet上でのFIDスコア2.07を達成する。
論文 参考訳(メタデータ) (2024-10-04T14:14:28Z) - Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models [6.809572275782338]
我々は,変換器モデルによる前方及び後方信号のモーメントを管理する統一信号伝搬理論を開発し,公式を提供する。
我々のフレームワークは、ハイアテンションスコアに関連する、消失/爆発の勾配、ランク崩壊、不安定性を理解し、緩和するために使用することができる。
論文 参考訳(メタデータ) (2024-03-14T17:59:14Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
クロススケールトランス(CT)プロセスは、追加計算なしで異なる段階の表現を特徴付ける。
複数のスケールで異なる対話型アテンションの組み合わせを利用する適応型マッチング認識変換器(AMT)を導入する。
また、より細かなコストボリューム構成に大まかにグローバルな意味情報を埋め込む2機能ガイドアグリゲーション(DFGA)も提案する。
論文 参考訳(メタデータ) (2023-12-14T01:33:18Z) - Converting Transformers to Polynomial Form for Secure Inference Over
Homomorphic Encryption [45.00129952368691]
ホモモルフィック暗号化(HE)は、ディープラーニングにおける最も有望なアプローチの1つである。
変換器を用いたHE上でのセキュアな推論のデモンストレーションとして,第1回変換器を紹介する。
我々のモデルは従来の手法に匹敵する結果をもたらし、同様のスケールのトランスフォーマーで性能ギャップを埋め、最先端のアプリケーションでHEが実現可能であることを裏付ける。
論文 参考訳(メタデータ) (2023-11-15T00:23:58Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
本稿では, 変圧器と畳み込みの利点を統一する, 大穴塗装の新しいモデルを提案する。
実験では、複数のベンチマークデータセット上で、新しいモデルの最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-03-29T06:36:17Z) - Language Modeling using LMUs: 10x Better Data Efficiency or Improved
Scaling Compared to Transformers [4.899818550820576]
シーケンス処理に先立って,レジェンダメモリ単位をベースとしたモデルを構築した。
我々の新しいアーキテクチャは10倍少ないトークンでトランスフォーマーと同じ精度を実現している。
論文 参考訳(メタデータ) (2021-10-05T23:20:37Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
トランスフォーマー層の構造を改良し,より効率的なアーキテクチャを実現する。
自己認識モジュールを補完する畳み込みモジュールを追加し、局所的およびグローバルな相互作用の学習を分離する。
得られたアーキテクチャを言語表現学習に適用し、異なるスケールのBERTモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:41:53Z) - Vision Transformers for Dense Prediction [77.34726150561087]
高密度予測タスクのバックボーンとして、畳み込みネットワークの代わりにビジョントランスを活用するアーキテクチャである高密度ビジョントランスを紹介します。
実験により,このアーキテクチャは高密度予測タスクにおいて大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-03-24T18:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。