論文の概要: Dynamic Diffusion Transformer
- arxiv url: http://arxiv.org/abs/2410.03456v2
- Date: Wed, 9 Oct 2024 01:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:09:37.831765
- Title: Dynamic Diffusion Transformer
- Title(参考訳): 動的拡散変圧器
- Authors: Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, Yang You,
- Abstract要約: Diffusion Transformer (DiT) は優れた性能を示したが、かなりの計算コストに悩まされている。
本研究では,動的拡散変換器 (DyDiT) を提案する。
3%の微調整により,DiT-XLのFLOPを51%削減し,生成を1.73高速化し,ImageNet上でのFIDスコア2.07を達成する。
- 参考スコア(独自算出の注目度): 67.13876021157887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Transformer (DiT), an emerging diffusion model for image generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs stem from the static inference paradigm, which inevitably introduces redundant computation in certain diffusion timesteps and spatial regions. To address this inefficiency, we propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions during generation. Specifically, we introduce a Timestep-wise Dynamic Width (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a Spatial-wise Dynamic Token (SDT) strategy to avoid redundant computation at unnecessary spatial locations. Extensive experiments on various datasets and different-sized models verify the superiority of DyDiT. Notably, with <3% additional fine-tuning iterations, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation by 1.73, and achieves a competitive FID score of 2.07 on ImageNet. The code is publicly available at https://github.com/NUS-HPC-AI-Lab/ Dynamic-Diffusion-Transformer.
- Abstract(参考訳): 画像生成のための拡散モデルである拡散変換器(DiT)は、優れた性能を示したが、かなりの計算コストに悩まされている。
本研究により,これらのコストは,特定の拡散時間と空間領域に必然的に冗長な計算を導入する静的推論パラダイムに起因していることが明らかとなった。
この非効率性に対処するため,動的拡散変換器 (DyDiT) を提案する。
具体的には,TDW(Timestep-wise Dynamic Width)アプローチを導入する。
さらに,不必要な空間位置における冗長な計算を回避するため,SDT(Spatial-wise Dynamic Token)戦略を設計する。
様々なデータセットと異なるサイズのモデルに対する大規模な実験は、DyDiTの優位性を検証する。
特に,<3%の微調整繰り返しにより,DiT-XLのFLOPを51%削減し,生成を1.73高速化し,ImageNet上でのFIDスコア2.07を達成する。
コードはhttps://github.com/NUS-HPC-AI-Lab/Dynamic-Diffusion-Transformerで公開されている。
関連論文リスト
- Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models [34.15905637499148]
本稿では,視覚トークン化器のトレーニングにおいて,潜在空間と事前学習された視覚基盤モデルとの整合性を提案する。
提案するVA-VAEは遅延拡散モデルの再構成世代フロンティアを著しく拡張する。
私たちは、LightningDiTと呼ばれるトレーニング戦略とアーキテクチャ設計を改善した拡張DiTベースラインを構築します。
論文 参考訳(メタデータ) (2025-01-02T18:59:40Z) - LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers [79.07412045476872]
拡散変換器は、様々な生成タスクの優越的なモデルとして登場してきた。
各拡散段階におけるモデル全体の実行は不要であることを示し、いくつかの計算は以前のステップの結果を遅延的に再利用することでスキップできることを示した。
遅延学習フレームワークを提案する。このフレームワークは,初期ステップからキャッシュされた結果を効率よく活用し,冗長な計算を省略する。
論文 参考訳(メタデータ) (2024-12-17T01:12:35Z) - FlexDiT: Dynamic Token Density Control for Diffusion Transformer [31.799640242972373]
Diffusion Transformer (DiT)は、優れた生成性能を提供するが、計算上の要求に直面する。
我々は,空間次元と時間次元の両方でトークン密度を動的に適用するFlexDiTを提案する。
本実験はFlexDiTの有効性を実証し,FLOPの55%削減と推論速度の175%改善を実現した。
論文 参考訳(メタデータ) (2024-12-08T18:59:16Z) - FORA: Fast-Forward Caching in Diffusion Transformer Acceleration [39.51519525071639]
拡散変換器(DiT)は、高品質な画像やビデオを生成するための事実上の選択肢となっている。
Fast-FORward Caching (FORA) は拡散過程の反復特性を利用してDiTを加速するように設計されている。
論文 参考訳(メタデータ) (2024-07-01T16:14:37Z) - Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models and Time-Dependent Layer Normalization [26.926712014346432]
本稿では,新しいマルチレゾリューションネットワークと時間依存層正規化を統合することで,拡散モデルの革新的拡張を提案する。
提案手法の有効性は,ImageNet 256 x 256で1.70,ImageNet 512 x 512で2.89の新しい最先端FIDスコアを設定することで,クラス条件のImageNet生成ベンチマークで実証される。
論文 参考訳(メタデータ) (2024-06-13T17:59:58Z) - Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching [56.286064975443026]
拡散変圧器内の多数の層をキャッシュ機構で計算することで、モデルパラメータを更新しなくても容易に除去できる。
本稿では,拡散変圧器の動的手法でキャッシングを学習するL2C(Learningto-Cache)を提案する。
実験の結果,L2C は DDIM や DPM-r など,キャッシュベースの従来の手法と同等の推論速度で性能を向上することがわかった。
論文 参考訳(メタデータ) (2024-06-03T18:49:57Z) - A-SDM: Accelerating Stable Diffusion through Model Assembly and Feature Inheritance Strategies [51.7643024367548]
安定拡散モデルは、テキスト・ツー・イメージ(T2I)と画像・ツー・イメージ(I2I)生成のための一般的かつ効果的なモデルである。
本研究では、SDMにおける冗長計算の削減と、チューニング不要とチューニング不要の両方の手法によるモデルの最適化に焦点をあてる。
論文 参考訳(メタデータ) (2024-05-31T21:47:05Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
ViT(Vision Transformer)は、特に認識タスクにおいて、強力なモデリング機能とスケーラビリティを実証している。
拡散型生成学習におけるViTの有効性について検討し、拡散ビジョン変換器(DiffiT)と呼ばれる新しいモデルを提案する。
DiffiTはパラメータ効率が大幅に向上した高忠実度画像を生成するのに驚くほど効果的である。
論文 参考訳(メタデータ) (2023-12-04T18:57:01Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。