論文の概要: Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation
- arxiv url: http://arxiv.org/abs/2402.02649v2
- Date: Tue, 5 Mar 2024 02:28:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 00:28:23.606070
- Title: Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation
- Title(参考訳): 医用画像セグメンテーションのための適応型Deep Supervisionを用いたDensely Decoded Networks
- Authors: Suraj Mishra and Danny Z. Chen
- Abstract要約: 本稿では「クラッチ」ネットワーク接続を選択的に導入し、高密度デコードネットワーク(ddn)を提案する。
ネットワークデコーダの各アップサンプリングステージにおける「クラッチ」接続により、ターゲットのローカライゼーションが向上する。
また、適応的な深層監視(ads)に基づくトレーニング戦略を提案し、入力データセットの特定の属性を利用して適応する。
- 参考スコア(独自算出の注目度): 19.302294715542175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation using deep neural networks has been highly
successful. However, the effectiveness of these networks is often limited by
inadequate dense prediction and inability to extract robust features. To
achieve refined dense prediction, we propose densely decoded networks (ddn), by
selectively introducing 'crutch' network connections. Such 'crutch' connections
in each upsampling stage of the network decoder (1) enhance target localization
by incorporating high resolution features from the encoder, and (2) improve
segmentation by facilitating multi-stage contextual information flow. Further,
we present a training strategy based on adaptive deep supervision (ads), which
exploits and adapts specific attributes of input dataset, for robust feature
extraction. In particular, ads strategically locates and deploys auxiliary
supervision, by matching the average input object size with the layer-wise
effective receptive fields (lerf) of a network, resulting in a class of ddns.
Such inclusion of 'companion objective' from a specific hidden layer, helps the
model pay close attention to some distinct input-dependent features, which the
network might otherwise 'ignore' during training. Our new networks and training
strategy are validated on 4 diverse datasets of different modalities,
demonstrating their effectiveness.
- Abstract(参考訳): ディープニューラルネットワークを用いた医用画像分割が成功している。
しかし、これらのネットワークの有効性は、密度の低い予測と頑健な特徴を抽出できないことによって制限されることが多い。
本研究では,'crutch'ネットワーク接続を選択的に導入し,高密度復号化ネットワーク(ddn)を提案する。
ネットワークデコーダ(1)のアップサンプリング段階におけるこのような「クラッチ」接続は、エンコーダからの高解像度特徴を取り入れたターゲットローカライゼーションを強化し、(2)多段階のコンテキスト情報フローを容易にすることでセグメンテーションを改善する。
さらに,適応的深層監視(ads)に基づくトレーニング戦略を提案し,入力データセットの特定の属性を活用・適応し,ロバストな特徴抽出を行う。
特にadsは、ネットワークの平均入力オブジェクトサイズと層別有効受容フィールド(lerf)をマッチングすることにより、補助的な監督を戦略的に配置し、展開する。
このような「コンパニオン目標」を特定の隠蔽層から含めることで、トレーニング中にネットワークが「無視」する可能性のある、いくつかの異なる入力依存機能にモデルが注意を払うのに役立つ。
当社の新しいネットワークとトレーニング戦略は、異なるモダリティの4つの多様なデータセット上で検証され、その効果を示しています。
関連論文リスト
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
本稿では,MDFI-Net という DPCN に基づく機能拡張型インタラクションネットワークを提案する。
提案したMDFI-Netは,公開データセットの最先端手法よりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2024-10-20T16:42:22Z) - DmADs-Net: Dense multiscale attention and depth-supervised network for medical image segmentation [10.85494240952418]
我々はDmAD-Net(Multiscale Attention and Depth-Supervised Network)を開発した。
異なる深さで機能抽出にResNetを使用し、マルチスケールの畳み込み機能注意ブロックを作成します。
ローカル・フィーチャー・アテンション・ブロックは、高レベルのセマンティック情報に対するローカル・フィーチャー・アテンションを強化するために作成される。
フィーチャーフュージョンフェーズでは、異なるセマンティック情報の融合を強化するために、フィーチャーリファインメントとフュージョンブロックが作成される。
論文 参考訳(メタデータ) (2024-05-01T12:15:58Z) - SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks [0.0]
本研究では,一意に効率的な残差ネットワークであるEfficient-ResNetを用いたエンコーダデコーダアーキテクチャを提案する。
アテンションブーティングゲート(AbG)とアテンションブーイングモジュール(AbM)は、グローバルコンテキストの出力の等価サイズで同変および特徴に基づく意味情報を融合することを目的として展開される。
我々のネットワークは、挑戦的なCamVidとCityscapesのデータセットでテストされており、提案手法により、残余ネットワークに対する大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-01-28T19:58:19Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
赤外線小目標検出のための新しいモデル駆動深層ネットワークを提案する。
従来の局所コントラスト測定法を、エンドツーエンドネットワークにおける深さ自在なパラメータレス非線形特徴精製層としてモジュール化します。
ネットワークアーキテクチャの各コンポーネントの有効性と効率を実証的に検証するために,ネットワーク奥行きの異なる詳細なアブレーション研究を行う。
論文 参考訳(メタデータ) (2020-12-15T19:33:09Z) - Boosting Connectivity in Retinal Vessel Segmentation via a Recursive
Semantics-Guided Network [23.936946593048987]
U字型ネットワークはセマンティクス誘導モジュールを導入して拡張され、拡張されたセマンティクス情報を浅い層に統合し、ネットワークがより強力な機能を探索できるようにする。
慎重に設計されたセマンティクス誘導ネットワークは、いくつかの公開データセットで広く評価されている。
論文 参考訳(メタデータ) (2020-04-24T09:18:04Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。