Architectural Strategies for the optimization of Physics-Informed Neural
Networks
- URL: http://arxiv.org/abs/2402.02711v1
- Date: Mon, 5 Feb 2024 04:15:31 GMT
- Title: Architectural Strategies for the optimization of Physics-Informed Neural
Networks
- Authors: Hemanth Saratchandran, Shin-Fang Chng, Simon Lucey
- Abstract summary: Physics-informed neural networks (PINNs) offer a promising avenue for tackling both forward and inverse problems in partial differential equations (PDEs)
Despite their remarkable empirical success, PINNs have garnered a reputation for their notorious training challenges across a spectrum of PDEs.
- Score: 30.92757082348805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) offer a promising avenue for
tackling both forward and inverse problems in partial differential equations
(PDEs) by incorporating deep learning with fundamental physics principles.
Despite their remarkable empirical success, PINNs have garnered a reputation
for their notorious training challenges across a spectrum of PDEs. In this
work, we delve into the intricacies of PINN optimization from a neural
architecture perspective. Leveraging the Neural Tangent Kernel (NTK), our study
reveals that Gaussian activations surpass several alternate activations when it
comes to effectively training PINNs. Building on insights from numerical linear
algebra, we introduce a preconditioned neural architecture, showcasing how such
tailored architectures enhance the optimization process. Our theoretical
findings are substantiated through rigorous validation against established PDEs
within the scientific literature.
Related papers
- SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks [0.9999629695552196]
Physics-Informed Neural Networks (PINNs) have emerged as a promising method for solving partial differential equations (PDEs)
We introduce Separable Physics-Informed Kolmogorov-Arnold Networks (SPIKANs)
This novel architecture applies the principle of separation of variables to PIKANs, decomposing the problem such that each dimension is handled by an individual KAN.
arXiv Detail & Related papers (2024-11-09T21:10:23Z) - A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
We introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems.
CoRes consistently outperforms competing methods in solving a broad range of benchmark problems.
We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.
arXiv Detail & Related papers (2024-01-07T14:09:42Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
Physics-informed neural networks (PINNs) have been demonstrated to be efficient in solving partial differential equations (PDEs)
In this paper, we establish rigorous analysis of the physics-informed convolutional neural network (PICNN) for solving PDEs on the sphere.
arXiv Detail & Related papers (2023-08-18T14:58:23Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
We present a new training paradigm referred to as "gradient boosting" (GB)
Instead of learning the solution of a given PDE using a single neural network directly, our algorithm employs a sequence of neural networks to achieve a superior outcome.
This work also unlocks the door to employing ensemble learning techniques in PINNs.
arXiv Detail & Related papers (2023-02-25T19:11:44Z) - On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it [1.3927943269211593]
PINNs are Neural Network architectures trained to emulate solutions of differential equations without the necessity of solution data.
We perform an empirical analysis of the behavior of PINN predictions outside their training domain.
We assess whether the algorithmic setup of PINNs can influence their potential for generalization and showcase the respective effect on the prediction.
arXiv Detail & Related papers (2023-02-15T09:51:56Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - A Theoretical Framework for Target Propagation [75.52598682467817]
We analyze target propagation (TP), a popular but not yet fully understood alternative to backpropagation (BP)
Our theory shows that TP is closely related to Gauss-Newton optimization and thus substantially differs from BP.
We provide a first solution to this problem through a novel reconstruction loss that improves feedback weight training.
arXiv Detail & Related papers (2020-06-25T12:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.