Position: What Can Large Language Models Tell Us about Time Series Analysis
- URL: http://arxiv.org/abs/2402.02713v2
- Date: Sat, 1 Jun 2024 06:42:09 GMT
- Title: Position: What Can Large Language Models Tell Us about Time Series Analysis
- Authors: Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui Pan, Qingsong Wen,
- Abstract summary: We argue that current large language models (LLMs) have the potential to revolutionize time series analysis.
Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering.
- Score: 69.70906014827547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series analysis is essential for comprehending the complexities inherent in various realworld systems and applications. Although large language models (LLMs) have recently made significant strides, the development of artificial general intelligence (AGI) equipped with time series analysis capabilities remains in its nascent phase. Most existing time series models heavily rely on domain knowledge and extensive model tuning, predominantly focusing on prediction tasks. In this paper, we argue that current LLMs have the potential to revolutionize time series analysis, thereby promoting efficient decision-making and advancing towards a more universal form of time series analytical intelligence. Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering. We encourage researchers and practitioners to recognize the potential of LLMs in advancing time series analysis and emphasize the need for trust in these related efforts. Furthermore, we detail the seamless integration of time series analysis with existing LLM technologies and outline promising avenues for future research.
Related papers
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - A Survey of Time Series Foundation Models: Generalizing Time Series Representation with Large Language Model [33.17908422599714]
Large language foundation models have unveiled their capabilities for cross-task transferability, zero-shot/few-shot learning, and decision-making explainability.
There are two main research lines, namely pre-training foundation models from scratch for time series and adapting large language foundation models for time series.
This survey offers a 3E analytical framework for comprehensive examination of related research.
arXiv Detail & Related papers (2024-05-03T03:12:55Z) - Evaluating Large Language Models on Time Series Feature Understanding: A Comprehensive Taxonomy and Benchmark [13.490168087823992]
Large Language Models (LLMs) offer the potential for automatic time series analysis and reporting.
We introduce a comprehensive taxonomy of time series features, a critical framework that delineates various characteristics inherent in time series data.
This dataset acts as a solid foundation for assessing the proficiency of LLMs in comprehending time series.
arXiv Detail & Related papers (2024-04-25T12:24:37Z) - Foundation Models for Time Series Analysis: A Tutorial and Survey [70.43311272903334]
Foundation Models (FMs) have fundamentally reshaped the paradigm of model design for time series analysis.
This survey aims to furnish a comprehensive and up-to-date overview of FMs for time series analysis.
arXiv Detail & Related papers (2024-03-21T10:08:37Z) - Empowering Time Series Analysis with Large Language Models: A Survey [24.202539098675953]
We provide a systematic overview of methods that leverage large language models for time series analysis.
Specifically, we first state the challenges and motivations of applying language models in the context of time series.
Next, we categorize existing methods into different groups (i.e., direct query, tokenization, prompt design, fine-tune, and model integration) and highlight the key ideas within each group.
arXiv Detail & Related papers (2024-02-05T16:46:35Z) - Large Language Models for Time Series: A Survey [34.24258745427964]
Large Language Models (LLMs) have seen significant use in domains such as natural language processing and computer vision.
LLMs present a significant potential for analysis of time series data, benefiting domains such as climate, IoT, healthcare, traffic, audio and finance.
arXiv Detail & Related papers (2024-02-02T07:24:35Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - A Survey on Deep Learning based Time Series Analysis with Frequency
Transformation [74.3919960186696]
Frequency transformation (FT) has been increasingly incorporated into deep learning models to enhance state-of-the-art accuracy and efficiency in time series analysis.
Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT.
We present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT.
arXiv Detail & Related papers (2023-02-04T14:33:07Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.