A Survey on Deep Learning based Time Series Analysis with Frequency
Transformation
- URL: http://arxiv.org/abs/2302.02173v4
- Date: Sun, 15 Oct 2023 07:45:40 GMT
- Title: A Survey on Deep Learning based Time Series Analysis with Frequency
Transformation
- Authors: Kun Yi and Qi Zhang and Longbing Cao and Shoujin Wang and Guodong Long
and Liang Hu and Hui He and Zhendong Niu and Wei Fan and Hui Xiong
- Abstract summary: Frequency transformation (FT) has been increasingly incorporated into deep learning models to enhance state-of-the-art accuracy and efficiency in time series analysis.
Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT.
We present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT.
- Score: 74.3919960186696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, frequency transformation (FT) has been increasingly incorporated
into deep learning models to significantly enhance state-of-the-art accuracy
and efficiency in time series analysis. The advantages of FT, such as high
efficiency and a global view, have been rapidly explored and exploited in
various time series tasks and applications, demonstrating the promising
potential of FT as a new deep learning paradigm for time series analysis.
Despite the growing attention and the proliferation of research in this
emerging field, there is currently a lack of a systematic review and in-depth
analysis of deep learning-based time series models with FT. It is also unclear
why FT can enhance time series analysis and what its limitations in the field
are. To address these gaps, we present a comprehensive review that
systematically investigates and summarizes the recent research advancements in
deep learning-based time series analysis with FT. Specifically, we explore the
primary approaches used in current models that incorporate FT, the types of
neural networks that leverage FT, and the representative FT-equipped models in
deep time series analysis. We propose a novel taxonomy to categorize the
existing methods in this field, providing a structured overview of the diverse
approaches employed in incorporating FT into deep learning models for time
series analysis. Finally, we highlight the advantages and limitations of FT for
time series modeling and identify potential future research directions that can
further contribute to the community of time series analysis.
Related papers
- TSI: A Multi-View Representation Learning Approach for Time Series Forecasting [29.05140751690699]
This study introduces a novel multi-view approach for time series forecasting.
It integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation.
This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships.
arXiv Detail & Related papers (2024-09-30T02:11:57Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - WEITS: A Wavelet-enhanced residual framework for interpretable time series forecasting [3.1551278097133895]
WEITS is a frequency-aware deep learning framework that is highly interpretable and computationally efficient.
In this paper, we present WEITS, a frequency-aware deep learning framework that is highly interpretable and computationally efficient.
arXiv Detail & Related papers (2024-05-17T16:09:51Z) - Foundation Models for Time Series Analysis: A Tutorial and Survey [70.43311272903334]
Foundation Models (FMs) have fundamentally reshaped the paradigm of model design for time series analysis.
This survey aims to furnish a comprehensive and up-to-date overview of FMs for time series analysis.
arXiv Detail & Related papers (2024-03-21T10:08:37Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Incorporating Taylor Series and Recursive Structure in Neural Networks
for Time Series Prediction [0.29008108937701327]
Time series analysis is relevant in various disciplines such as physics, biology, chemistry, and finance.
We present a novel neural network architecture that integrates elements from ResNet structures, while introducing the innovative Taylor series framework.
arXiv Detail & Related papers (2024-02-09T14:34:28Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
We argue that current large language models (LLMs) have the potential to revolutionize time series analysis.
Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering.
arXiv Detail & Related papers (2024-02-05T04:17:49Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data.
We propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD, to exploit both time and frequency domains for performance improvement.
arXiv Detail & Related papers (2022-10-18T09:08:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.