Understanding the planning of LLM agents: A survey
- URL: http://arxiv.org/abs/2402.02716v1
- Date: Mon, 5 Feb 2024 04:25:24 GMT
- Title: Understanding the planning of LLM agents: A survey
- Authors: Xu Huang and Weiwen Liu and Xiaolong Chen and Xingmei Wang and Hao
Wang and Defu Lian and Yasheng Wang and Ruiming Tang and Enhong Chen
- Abstract summary: This survey provides the first systematic view of LLM-based agents planning, covering recent works aiming to improve planning ability.
Comprehensive analyses are conducted for each direction, and further challenges in the field of research are discussed.
- Score: 98.82513390811148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) have shown significant intelligence, the
progress to leverage LLMs as planning modules of autonomous agents has
attracted more attention. This survey provides the first systematic view of
LLM-based agents planning, covering recent works aiming to improve planning
ability. We provide a taxonomy of existing works on LLM-Agent planning, which
can be categorized into Task Decomposition, Plan Selection, External Module,
Reflection and Memory. Comprehensive analyses are conducted for each direction,
and further challenges for the field of research are discussed.
Related papers
- Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
Proactive Agent Planning requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction.
We propose a novel multi-agent framework, Clarification-Execution-Planning (textttCEP), which consists of three agents specialized in clarification, execution, and planning.
arXiv Detail & Related papers (2024-06-18T14:07:28Z) - On the Roles of LLMs in Planning: Embedding LLMs into Planning Graphs [12.326862964753694]
We study the insight of the planning capability of large language models (LLMs) in off-the-shelf planning frameworks.
We propose a novel LLMs-based planning framework with LLMs embedded in two levels of planning graphs.
We empirically exhibit the effectiveness of our proposed framework in various planning domains.
arXiv Detail & Related papers (2024-02-18T15:53:32Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
We introduce EgoPlan-Bench, a benchmark to evaluate the planning abilities of MLLMs in real-world scenarios.
We show that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning.
We also present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench.
arXiv Detail & Related papers (2023-12-11T03:35:58Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
arXiv Detail & Related papers (2023-09-30T00:10:14Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z) - On the Planning Abilities of Large Language Models : A Critical
Investigation [34.262740442260515]
We evaluate the effectiveness of LLMs in generating plans autonomously in commonsense planning tasks.
In the LLM-Modulo setting, we demonstrate that LLM-generated plans can improve the search process for underlying sound planners.
arXiv Detail & Related papers (2023-05-25T06:32:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.