AS-ES Learning: Towards Efficient CoT Learning in Small Models
- URL: http://arxiv.org/abs/2403.01969v1
- Date: Mon, 4 Mar 2024 12:13:59 GMT
- Title: AS-ES Learning: Towards Efficient CoT Learning in Small Models
- Authors: Nuwa Xi, Yuhan Chen, Sendong Zhao, Haochun Wang, Bing Qin and Ting Liu
- Abstract summary: Chain-of-Thought (CoT) serves as a critical emerging ability in Large Language Models (LLMs)
We propose a new training paradigm AS-ES (Abstractive Segments - Extractive Segments) learning, which exploits the inherent information in CoT for iterative generation.
Experiments show that our methods surpass the direct seq2seq training on CoT-extensive tasks like MWP and PET summarization, without data augmentation or altering the model itself.
- Score: 35.225382243612174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Chain-of-Thought (CoT) serves as a critical emerging ability in LLMs,
especially when it comes to logical reasoning. Attempts have been made to
induce such ability in small models as well by distilling from the data with
CoT generated by Large Language Models (LLMs). However, existing methods often
simply generate and incorporate more data from LLMs and fail to note the
importance of efficiently utilizing existing CoT data. We here propose a new
training paradigm AS-ES (Abstractive Segments - Extractive Segments) learning,
which exploits the inherent information in CoT for iterative generation.
Experiments show that our methods surpass the direct seq2seq training on
CoT-extensive tasks like MWP and PET summarization, without data augmentation
or altering the model itself. Furthermore, we explore the reason behind the
inefficiency of small models in learning CoT and provide an explanation of why
AS-ES learning works, giving insights into the underlying mechanism of CoT.
Related papers
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate [40.5601980891318]
Generalization remains a central challenge in machine learning.
We propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization.
LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners.
arXiv Detail & Related papers (2024-02-05T07:05:17Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Concept-aware Training Improves In-context Learning Ability of Language
Models [0.0]
Many recent language models (LMs) of Transformers family exhibit so-called in-context learning (ICL) ability.
We propose a method to create LMs able to better utilize the in-context information.
We measure that data sampling of Concept-aware Training consistently improves models' reasoning ability.
arXiv Detail & Related papers (2023-05-23T07:44:52Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.