Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning
- URL: http://arxiv.org/abs/2408.03819v1
- Date: Wed, 7 Aug 2024 14:55:04 GMT
- Title: Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning
- Authors: Simret Araya Gebreegziabher, Kuangshi Ai, Zheng Zhang, Elena L. Glassman, Toby Jia-Jun Li,
- Abstract summary: Active Learning (AL) allows models to learn interactively from user feedback.
This paper introduces a counterfactual data augmentation approach to AL.
- Score: 19.962212551963383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active Learning (AL) allows models to learn interactively from user feedback. This paper introduces a counterfactual data augmentation approach to AL, particularly addressing the selection of datapoints for user querying, a pivotal concern in enhancing data efficiency. Our approach is inspired by Variation Theory, a theory of human concept learning that emphasizes the essential features of a concept by focusing on what stays the same and what changes. Instead of just querying with existing datapoints, our approach synthesizes artificial datapoints that highlight potential key similarities and differences among labels using a neuro-symbolic pipeline combining large language models (LLMs) and rule-based models. Through an experiment in the example domain of text classification, we show that our approach achieves significantly higher performance when there are fewer annotated data. As the annotated training data gets larger the impact of the generated data starts to diminish showing its capability to address the cold start problem in AL. This research sheds light on integrating theories of human learning into the optimization of AL.
Related papers
- Data-Centric Human Preference Optimization with Rationales [23.243583332894737]
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences.
This work shifts focus to improving preference learning through a data-centric approach.
We propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices.
arXiv Detail & Related papers (2024-07-19T17:27:52Z) - Empowering Graph Invariance Learning with Deep Spurious Infomax [27.53568333416706]
We introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias.
EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76%$.
arXiv Detail & Related papers (2024-07-13T14:18:47Z) - Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate [40.5601980891318]
Generalization remains a central challenge in machine learning.
We propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization.
LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners.
arXiv Detail & Related papers (2024-02-05T07:05:17Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - EiHi Net: Out-of-Distribution Generalization Paradigm [6.33280703577189]
EiHi net is a model learning paradigm that can be blessed on any visual backbone.
This paper develops a new EiHi net to solve the out-of-distribution (OoD) generalization problem in deep learning.
arXiv Detail & Related papers (2022-09-29T17:08:12Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
We develop a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF) for reinforcement learning.
CCLF fully exploit sample importance and improve learning efficiency in a self-supervised manner.
We evaluate this approach on the DeepMind Control Suite, Atari, and MiniGrid benchmarks.
arXiv Detail & Related papers (2022-05-02T14:42:05Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Improving Federated Relational Data Modeling via Basis Alignment and
Weight Penalty [18.096788806121754]
Federated learning (FL) has attracted increasing attention in recent years.
We present a modified version of the graph neural network algorithm that performs federated modeling over Knowledge Graph (KG)
We propose a novel optimization algorithm, named FedAlign, with 1) optimal transportation (OT) for on-client personalization and 2) weight constraint to speed up the convergence.
Empirical results show that our proposed method outperforms the state-of-the-art FL methods, such as FedAVG and FedProx, with better convergence.
arXiv Detail & Related papers (2020-11-23T12:52:18Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.