論文の概要: AI-Enhanced Virtual Reality in Medicine: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2402.03093v2
- Date: Mon, 8 Jul 2024 03:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 02:48:51.351593
- Title: AI-Enhanced Virtual Reality in Medicine: A Comprehensive Survey
- Title(参考訳): AIによる医学におけるバーチャルリアリティ:総合的な調査
- Authors: Yixuan Wu, Kaiyuan Hu, Danny Z. Chen, Jian Wu,
- Abstract要約: 本稿では、医療・サービスにおけるAIによるVR応用の急成長分野を包括的に検討する。
系統分類を導入することで、関連する技術と応用を慎重に3つの明確に定義されたカテゴリに分類する。
この分類は、医療領域でAIによって駆動されるVRが果たす様々な役割を構造化された探索を可能にする。
- 参考スコア(独自算出の注目度): 16.66549936852184
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the rapid advance of computer graphics and artificial intelligence technologies, the ways we interact with the world have undergone a transformative shift. Virtual Reality (VR) technology, aided by artificial intelligence (AI), has emerged as a dominant interaction media in multiple application areas, thanks to its advantage of providing users with immersive experiences. Among those applications, medicine is considered one of the most promising areas. In this paper, we present a comprehensive examination of the burgeoning field of AI-enhanced VR applications in medical care and services. By introducing a systematic taxonomy, we meticulously classify the pertinent techniques and applications into three well-defined categories based on different phases of medical diagnosis and treatment: Visualization Enhancement, VR-related Medical Data Processing, and VR-assisted Intervention. This categorization enables a structured exploration of the diverse roles that AI-powered VR plays in the medical domain, providing a framework for a more comprehensive understanding and evaluation of these technologies. To our best knowledge, this is the first systematic survey of AI-powered VR systems in medical settings, laying a foundation for future research in this interdisciplinary domain.
- Abstract(参考訳): コンピュータグラフィックスと人工知能技術の急速な進歩により、私たちが世界と対話する方法は変革的な変化を遂げた。
人工知能(AI)が支援するVR(Virtual Reality)技術は、ユーザに対して没入感のあるエクスペリエンスを提供するというメリットのおかげで、複数のアプリケーション領域において、主要なインタラクションメディアとして登場した。
これらの応用の中で、医学は最も有望な分野の1つであると考えられている。
本稿では,医療・サービスにおけるAIによるVR応用の急成長分野を包括的に検討する。
体系的な分類法を導入することで、関連する技術と応用を、可視化強化、VR関連医療データ処理、VR支援インターベンションという、診断と治療の異なるフェーズに基づいて、明確に3つのカテゴリに分類する。
この分類は、医療領域でAIによって駆動されるVRが果たす様々な役割を構造化した探索を可能にし、これらの技術のより包括的な理解と評価のためのフレームワークを提供する。
われわれの知る限りでは、医療現場におけるAIを利用したVRシステムの体系的な調査はこれが初めてであり、この学際分野における将来の研究の基盤となる。
関連論文リスト
- Thelxinoë: Recognizing Human Emotions Using Pupillometry and Machine Learning [0.0]
本研究は,現実的かつ感情的に共鳴するタッチインタラクションのための複数のセンサデータを統合することで,VR体験の向上を目的とした,Thelxino"eフレームワークに大きく貢献する。
我々の発見は、没入的でインタラクティブなVR環境を開発するための新しい道を開き、バーチャルタッチ技術の将来の進歩への道を開いた。
論文 参考訳(メタデータ) (2024-03-27T21:14:17Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
本稿では、医用画像における生成AIの変換可能性について考察し、合成ACM-2データを生成する能力を強調した。
データセットのサイズと多様性の制限に対処することにより、これらのモデルはより正確な診断と患者の結果の改善に寄与する。
論文 参考訳(メタデータ) (2024-03-26T09:55:49Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Multisensory extended reality applications offer benefits for volumetric biomedical image analysis in research and medicine [2.46537907738351]
高解像度ボリューム画像からの3Dデータは、現代医学における診断と治療の中心的な資源である。
近年の研究では、視覚深度知覚と触覚を持つ3次元画像の知覚に拡張現実(XR)を用いたが、制限的な触覚デバイスを用いた。
本研究では, バイオメディカル画像の専門家24名を対象に, 3次元医用形状を探索した。
論文 参考訳(メタデータ) (2023-11-07T13:37:47Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
近年、従来の医療システムを変革する試みとして、デジタル医療の研究が急速に増加している。
コンピュータによるオーディションは、少なくとも商業的関心の面では遅れている。
実生活における聴覚信号の分析に必要な基礎技術に対応する聴覚、計算とデータ効率の進歩、個々の差異を考慮し、医療データの長手性を扱う聴覚。
論文 参考訳(メタデータ) (2023-01-25T09:25:08Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - AI in Telemedicine: An Appraisal on Deep Learning-Based Approaches to
Virtual Diagnostic Solutions (VDS) [0.0]
本稿では、さまざまなテレメディカルイノベーションのユーザビリティについて、より包括的な視点で、医療提供におけるAIの実装について考察する。
本研究は, 遠隔医療における人工知能の概要を概観し, 深層学習に基づく仮想診断ソリューションへのアプローチに着目した。
論文 参考訳(メタデータ) (2022-07-31T09:01:25Z) - Artificial Intelligence for the Metaverse: A Survey [66.57225253532748]
まず、機械学習アルゴリズムやディープラーニングアーキテクチャを含むAIの予備と、メタバースにおけるその役割について紹介する。
次に、メタバースの可能性を秘めた6つの技術的側面に関するAIベースの手法に関する包括的調査を行う。
医療、製造業、スマートシティ、ゲームなどのAI支援アプリケーションは、仮想世界に展開するために研究されている。
論文 参考訳(メタデータ) (2022-02-15T03:34:56Z) - Wireless Edge-Empowered Metaverse: A Learning-Based Incentive Mechanism
for Virtual Reality [102.4151387131726]
メタバースにおけるVRサービスのための学習型インセンティブメカニズムフレームワークを提案する。
まず,仮想世界におけるVRユーザのための指標として,知覚の質を提案する。
第二に、VRユーザー(買い手)とVR SP(売り手)間のVRサービスの迅速な取引のために、オランダの二重オークション機構を設計する。
第3に,この競売プロセスの高速化を目的とした深層強化学習型競売機を設計する。
論文 参考訳(メタデータ) (2021-11-07T13:02:52Z) - Surgical Visual Domain Adaptation: Results from the MICCAI 2020
SurgVisDom Challenge [9.986124942784969]
この研究は、データプライバシの懸念を克服するために、手術における視覚領域適応の可能性を探究する。
特に,外科手術のバーチャルリアリティ(VR)シミュレーションのビデオを用いて,臨床ライクな環境下でのタスク認識アルゴリズムの開発を提案する。
課題参加者によって開発された視覚的ドメイン適応を解決するためのさまざまなアプローチのパフォーマンスを紹介します。
論文 参考訳(メタデータ) (2021-02-26T18:45:28Z) - A survey on applications of augmented, mixed and virtual reality for
nature and environment [114.4879749449579]
拡張現実(AR)、仮想現実(VR)、複合現実(MR)は、彼らが提供できるエンゲージメントとエンリッチな体験のために、大きな潜在能力を持つ技術である。
しかし、環境応用の分野でAR、VR、MRがもたらす可能性はまだ広く研究されていない。
本研究は,環境に有利な既存のAR/VR/MRアプリケーションを発見・分類したり,環境問題に対する意識を高めることを目的とした調査の結果を示す。
論文 参考訳(メタデータ) (2020-08-27T09:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。