FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion
- URL: http://arxiv.org/abs/2402.03226v2
- Date: Thu, 23 May 2024 03:20:28 GMT
- Title: FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion
- Authors: Xing Han, Huy Nguyen, Carl Harris, Nhat Ho, Suchi Saria,
- Abstract summary: FuseMoE is a mixture-of-experts framework incorporated with an innovative gating function.
Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories.
- Score: 29.130355774088205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning models in critical fields increasingly grapple with multimodal data, they face the dual challenges of handling a wide array of modalities, often incomplete due to missing elements, and the temporal irregularity and sparsity of collected samples. Successfully leveraging this complex data, while overcoming the scarcity of high-quality training samples, is key to improving these models' predictive performance. We introduce ``FuseMoE'', a mixture-of-experts framework incorporated with an innovative gating function. Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories. Theoretically, our unique gating function contributes to enhanced convergence rates, leading to better performance in multiple downstream tasks. The practical utility of FuseMoE in the real world is validated by a diverse set of challenging prediction tasks.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization [11.954904313477176]
Federated Learning (FL) is a method for training machine learning models using distributed data sources.
This study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL.
arXiv Detail & Related papers (2024-10-04T01:24:02Z) - A Markov Random Field Multi-Modal Variational AutoEncoder [1.2233362977312945]
This work introduces a novel multimodal VAE that incorporates a Markov Random Field (MRF) into both the prior and posterior distributions.
Our approach is specifically designed to model and leverage the intricacies of these relationships, enabling a more faithful representation of multimodal data.
arXiv Detail & Related papers (2024-08-18T19:27:30Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
Multimodal Federated Cross Prototype Learning (MFCPL) is a novel approach for MFL under severely missing modalities.
MFCPL provides diverse modality knowledge in modality-shared level with the cross-modal regularization and modality-specific level with cross-modal contrastive mechanism.
Our approach introduces the cross-modal alignment to provide regularization for modality-specific features, thereby enhancing overall performance.
arXiv Detail & Related papers (2024-01-25T02:25:23Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.