論文の概要: GUARD: Role-playing to Generate Natural-language Jailbreakings to Test
Guideline Adherence of Large Language Models
- arxiv url: http://arxiv.org/abs/2402.03299v3
- Date: Wed, 6 Mar 2024 04:28:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 17:23:00.373468
- Title: GUARD: Role-playing to Generate Natural-language Jailbreakings to Test
Guideline Adherence of Large Language Models
- Title(参考訳): guard: 大規模な言語モデルのガイドライン準拠をテストするために、自然言語脱獄を生成するロールプレイング
- Authors: Haibo Jin, Ruoxi Chen, Andy Zhou, Jinyin Chen, Yang Zhang, Haohan Wang
- Abstract要約: 主要な安全策の1つは、リリース前にジェイルブレイクで大規模言語モデルを積極的にテストすることである。
我々は,人間の世代スタイルでジェイルブレイクを発生させるための,新しい直感的かつ直感的な戦略を提案する。
我々の異なる役割のシステムは、この知識グラフを利用して新しいジェイルブレイクを生成する。
- 参考スコア(独自算出の注目度): 17.09386716887775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of "jailbreaks" to bypass safety filters of Large Language
Models (LLMs) and harmful responses have encouraged the community to implement
safety measures. One major safety measure is to proactively test the LLMs with
jailbreaks prior to the release. Therefore, such testing will require a method
that can generate jailbreaks massively and efficiently. In this paper, we
follow a novel yet intuitive strategy to generate jailbreaks in the style of
the human generation. We propose a role-playing system that assigns four
different roles to the user LLMs to collaborate on new jailbreaks. Furthermore,
we collect existing jailbreaks and split them into different independent
characteristics using clustering frequency and semantic patterns sentence by
sentence. We organize these characteristics into a knowledge graph, making them
more accessible and easier to retrieve. Our system of different roles will
leverage this knowledge graph to generate new jailbreaks, which have proved
effective in inducing LLMs to generate unethical or guideline-violating
responses. In addition, we also pioneer a setting in our system that will
automatically follow the government-issued guidelines to generate jailbreaks to
test whether LLMs follow the guidelines accordingly. We refer to our system as
GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have
empirically validated the effectiveness of GUARD on three cutting-edge
open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a
widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the
realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing
GUARD's versatility and contributing valuable insights for the development of
safer, more reliable LLM-based applications across diverse modalities.
- Abstract(参考訳): 大規模言語モデル(LLM)の安全フィルタをバイパスする"jailbreaks"の発見と有害な応答により、コミュニティは安全対策を実施するようになった。
主要な安全対策の1つは、リリース前にLLMをジェイルブレイクで積極的にテストすることである。
そのため、このようなテストはジェイルブレイクを大量かつ効率的に生成できる方法を必要とする。
本稿では,人間の世代のスタイルでジェイルブレイクを発生させる新奇かつ直感的な戦略について述べる。
我々は,新しいジェイルブレイクに協力するために,4つの異なる役割をユーザLLMに割り当てるロールプレイングシステムを提案する。
さらに、既存のジェイルブレイクを収集し、クラスタリング周波数と文による意味パターンを用いて、異なる独立した特徴に分割する。
これらの特徴を知識グラフに整理し、よりアクセスしやすく、検索しやすくします。
我々の異なる役割のシステムは、この知識グラフを利用して新しいジェイルブレイクを生成するが、これはLLMを非倫理的またはガイドライン違反の応答を生成するのに有効である。
さらに,llmがガイドラインに従っているかどうかをテストするために,政府発行のガイドラインに従って自動的にジェイルブレイクを発生させるシステムの設定の先駆者でもある。
本稿では,GUARD (Guideline Upholding through Adaptive Role-play Diagnostics) と呼ぶ。
我々は,GUARDが3つの最先端オープンソースLLM(Vicuna-13B,LongChat-7B,Llama-2-7B)および広く利用されている商用LLM(ChatGPT)に対する有効性を実証的に検証した。
さらに,我々の研究は視覚言語モデル(minigpt-v2とgemini vision pro)の領域にまで及んで,ガードの汎用性を示し,多様なモダリティにまたがってより安全で信頼性の高いllmベースのアプリケーションを開発する上で有用な洞察を与えています。
関連論文リスト
- EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Knowledge-to-Jailbreak: One Knowledge Point Worth One Attack [86.6931690001357]
Knowledge-to-jailbreakは、ドメイン知識からジェイルブレイクを生成し、特定のドメイン上での大規模言語モデルの安全性を評価することを目的としている。
12,974組の知識ジェイルブレイクペアを持つ大規模データセットを収集し、ジェイルブレイクジェネレータとして大規模言語モデルを微調整する。
論文 参考訳(メタデータ) (2024-06-17T15:59:59Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
大規模言語モデルの自動レッドチーム化のための新しいブラックボックスジェイルブレイクフレームワークを提案する。
我々は、Jailbreak LLMに対する反復最適化アルゴリズムを用いて、悪意のあるコンテンツの隠蔽とメモリリフレーミングを設計した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - Jailbreaking Attack against Multimodal Large Language Model [69.52466793164618]
本稿では,マルチモーダル大規模言語モデル(MLLM)に対するジェイルブレイク攻撃に焦点を当てた。
imgJP (emphimage Jailbreaking Prompt) の探索手法を提案する。
提案手法は, 生成したimgJPをジェイルブレイクモデルに転送できるため, 強いモデル伝達性を示す。
論文 参考訳(メタデータ) (2024-02-04T01:29:24Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
大規模言語モデル(LLM)が悪意ある指示に直面すると有害な応答を発生させる現象である。
本稿では,LDMのポテンシャルを増幅することでセキュリティ機構をバイパスし,肯定応答を生成する新しい自動ジェイルブレイク手法RADIALを提案する。
提案手法は,5つのオープンソースのLLMを用いて,英語の悪意のある命令に対する攻撃性能を良好に向上すると同時に,中国語の悪意のある命令に対するクロス言語攻撃の実行において,堅牢な攻撃性能を維持する。
論文 参考訳(メタデータ) (2023-12-07T08:29:58Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
本稿では,大規模言語モデルに対する新たなジェイルブレイク攻撃であるAutoDANを紹介する。
AutoDANは、慎重に設計された階層型遺伝的アルゴリズムによって、ステルスなジェイルブレイクプロンプトを自動的に生成できる。
論文 参考訳(メタデータ) (2023-10-03T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。