Physical Reservoir Computing Enabled by Solitary Waves and
Biologically-Inspired Nonlinear Transformation of Input Data
- URL: http://arxiv.org/abs/2402.03319v1
- Date: Wed, 3 Jan 2024 06:22:36 GMT
- Title: Physical Reservoir Computing Enabled by Solitary Waves and
Biologically-Inspired Nonlinear Transformation of Input Data
- Authors: Ivan S. Maksymov
- Abstract summary: Reservoir computing (RC) systems can efficiently forecast chaotic time series using nonlinear dynamical properties of an artificial neural network of random connections.
Inspired by the nonlinear processes in a living biological brain, in this paper we experimentally validate a physical RC system that substitutes the effect of randomness for a nonlinear transformation of input data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reservoir computing (RC) systems can efficiently forecast chaotic time series
using nonlinear dynamical properties of an artificial neural network of random
connections. The versatility of RC systems has motivated further research on
both hardware counterparts of traditional RC algorithms and more efficient
RC-like schemes. Inspired by the nonlinear processes in a living biological
brain and using solitary waves excited on the surface of a flowing liquid film,
in this paper we experimentally validate a physical RC system that substitutes
the effect of randomness for a nonlinear transformation of input data. Carrying
out all operations using a microcontroller with a minimal computational power,
we demonstrate that the so-designed RC system serves as a technically simple
hardware counterpart to the `next-generation' improvement of the traditional RC
algorithm.
Related papers
- Wireless Human-Machine Collaboration in Industry 5.0 [75.78721184383897]
Wireless Human-Machine Collaboration represents a critical advancement for Industry 5.0.
Stability analysis certifies how the closed-loop system will behave under model randomness.
This paper establishes a fundamental WHMC model incorporating dual wireless loops for machine and human control.
arXiv Detail & Related papers (2024-10-18T03:44:10Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system.
We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system.
arXiv Detail & Related papers (2023-01-19T06:46:36Z) - Online Real-time Learning of Dynamical Systems from Noisy Streaming
Data: A Koopman Operator Approach [0.0]
We present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data.
The proposed algorithm employs the Robust Koopman operator framework to mitigate the effect of measurement noise.
arXiv Detail & Related papers (2022-12-10T10:21:45Z) - Catch-22s of reservoir computing [0.0]
Reservoir Computing is a simple and efficient framework for forecasting the behavior of nonlinear dynamical systems from data.
We focus on the important problem of basin prediction -- determining which attractor a system will converge to from its initial conditions.
By incorporating the exact nonlinearities in the original equations, we show that NGRC can accurately reconstruct intricate and high-dimensional basins of attraction.
arXiv Detail & Related papers (2022-10-18T23:31:15Z) - Neural Echo State Network using oscillations of gas bubbles in water:
Computational validation by Mackey-Glass time series forecasting [0.0]
We propose an RC system that combines the nonlinearity of an acoustic response of a cluster of oscillating gas bubbles in water with a standard Echo State Network (ESN) algorithm.
We computationally confirm the plausibility of the proposed RC system by demonstrating its ability to forecast a chaotic Mackey-Glass time series with the efficiency of ESN.
arXiv Detail & Related papers (2021-12-22T00:21:54Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Harnessing Tensor Structures -- Multi-Mode Reservoir Computing and Its
Application in Massive MIMO [39.46260351352041]
We introduce a new neural network (NN) structure, multi-mode reservoir computing (Multi-Mode RC)
The Multi-Mode RC-based learning framework can efficiently and effectively combat practical constraints of wireless systems.
arXiv Detail & Related papers (2021-01-25T20:30:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.