A Collaborative Model-driven Network for MRI Reconstruction
- URL: http://arxiv.org/abs/2402.03383v2
- Date: Sun, 5 May 2024 13:48:12 GMT
- Title: A Collaborative Model-driven Network for MRI Reconstruction
- Authors: Xiaoyu Qiao, Weisheng Li, Guofen Wang, Yuping Huang,
- Abstract summary: We propose a collaborative model-driven network to exploit the complementarity of different regularizers.
We show significant improvements in the final results without additional computational costs.
- Score: 9.441882492801174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL)-based methods offer a promising solution to reduce the prolonged scanning time in magnetic resonance imaging (MRI). While model-driven DL methods have demonstrated convincing results by incorporating prior knowledge into deep networks, further exploration is needed to optimize the integration of diverse priors.. Existing model-driven networks typically utilize linearly stacked unrolled cascades to mimic iterative solution steps in optimization algorithms. However, this approach needs to find a balance between different prior-based regularizers during training, resulting in slower convergence and suboptimal reconstructions. To overcome the limitations, we propose a collaborative model-driven network to maximally exploit the complementarity of different regularizers. We design attention modules to learn both the relative confidence (RC) and overall confidence (OC) for the intermediate reconstructions (IRs) generated by different prior-based subnetworks. RC assigns more weight to the areas of expertise of the subnetworks, enabling precise element-wise collaboration. We design correction modules to tackle bottleneck scenarios where both subnetworks exhibit low accuracy, and they further optimize the IRs based on OC maps. IRs across various stages are concatenated and fed to the attention modules to build robust and accurate confidence maps. Experimental results on multiple datasets showed significant improvements in the final results without additional computational costs. Moreover, the proposed model-driven network design strategy can be conveniently applied to various model-driven methods to improve their performance.
Related papers
- MAGNet: A Multi-Scale Attention-Guided Graph Fusion Network for DRC Violation Detection [0.5261718469769449]
Design rule checking (DRC) is of great significance for cost reduction and design efficiency improvement in IC designs.<n>We propose MAGNet, a hybrid deep learning model that integrates an improved U-Net with a graph neural network for DRC prediction.<n>Overall, MAGNet effectively combines spatial, semantic, and structural information, achieving improved prediction accuracy and reduced false positive rates in DRC hotspot detection.
arXiv Detail & Related papers (2025-06-08T13:13:41Z) - USEFUSE: Utile Stride for Enhanced Performance in Fused Layer Architecture of Deep Neural Networks [0.6435156676256051]
This study presents the Sum-of-Products (SOP) units for convolution, which utilize low-latency left-to-right bit-serial arithmetic.
An effective mechanism detects and skips inefficient convolutions after ReLU layers, minimizing power consumption.
Two designs cater to varied demands: one focuses on minimal response time for mission-critical applications, and another focuses on resource-constrained devices with comparable latency.
arXiv Detail & Related papers (2024-12-18T11:04:58Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Multi-IMU with Online Self-Consistency for Freehand 3D Ultrasound
Reconstruction [12.097414194618134]
Freehand 3D US is a technique that provides a deeper understanding of scanned regions without increasing complexity.
estimating elevation displacement and accumulation error remains challenging.
We propose a novel online self-consistency network (OSCNet) using multiple inertial measurement units (IMUs) to improve reconstruction performance.
arXiv Detail & Related papers (2023-06-28T13:23:33Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Residual Multiplicative Filter Networks for Multiscale Reconstruction [24.962697695403037]
We introduce a new coordinate network architecture and training scheme that enables coarse-to-fine optimization with fine-grained control over the frequency support of learned reconstructions.
We demonstrate how these modifications enable multiscale optimization for coarse-to-fine fitting to natural images.
We then evaluate our model on synthetically generated datasets for the the problem of single-particle cryo-EM reconstruction.
arXiv Detail & Related papers (2022-06-01T20:16:28Z) - IMDeception: Grouped Information Distilling Super-Resolution Network [7.6146285961466]
Single-Image-Super-Resolution (SISR) is a classical computer vision problem that has benefited from the recent advancements in deep learning methods.
In this work, we propose the Global Progressive Refinement Module (GPRM) as a less parameter-demanding alternative to the IIC module for feature aggregation.
We also propose Grouped Information Distilling Blocks (GIDB) to further decrease the number of parameters and floating point operations persecond (FLOPS)
Experiments reveal that the proposed network performs on par with state-of-the-art models despite having a limited number of parameters and FLOPS
arXiv Detail & Related papers (2022-04-25T06:43:45Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.