論文の概要: Estimating Epistemic and Aleatoric Uncertainty with a Single Model
- arxiv url: http://arxiv.org/abs/2402.03478v2
- Date: Wed, 06 Nov 2024 23:02:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-09 00:49:02.867869
- Title: Estimating Epistemic and Aleatoric Uncertainty with a Single Model
- Title(参考訳): 単一モデルによるてんかんと動脈不確かさの推定
- Authors: Matthew A. Chan, Maria J. Molina, Christopher A. Metzler,
- Abstract要約: 我々は,ハイパー拡散モデル(HyperDM)の新しいアプローチを提案する。
HyperDMは、予測精度を、場合によってはマルチモデルアンサンブルに匹敵する。
我々は,X線CTと気象温度予測の2つの異なる実世界の課題に対して,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 5.871583927216653
- License:
- Abstract: Estimating and disentangling epistemic uncertainty, uncertainty that is reducible with more training data, and aleatoric uncertainty, uncertainty that is inherent to the task at hand, is critically important when applying machine learning to high-stakes applications such as medical imaging and weather forecasting. Conditional diffusion models' breakthrough ability to accurately and efficiently sample from the posterior distribution of a dataset now makes uncertainty estimation conceptually straightforward: One need only train and sample from a large ensemble of diffusion models. Unfortunately, training such an ensemble becomes computationally intractable as the complexity of the model architecture grows. In this work we introduce a new approach to ensembling, hyper-diffusion models (HyperDM), which allows one to accurately estimate both epistemic and aleatoric uncertainty with a single model. Unlike existing single-model uncertainty methods like Monte-Carlo dropout and Bayesian neural networks, HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles. Furthermore, our proposed approach scales to modern network architectures such as Attention U-Net and yields more accurate uncertainty estimates compared to existing methods. We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting.
- Abstract(参考訳): 医療画像や天気予報などの高度な応用に機械学習を適用する際には, 疫学的な不確実性, より多くのトレーニングデータで再現可能な不確実性, 目の前のタスクに固有の不確実性, などの評価と非干渉性が重要である。
データセットの後部分布から正確かつ効率的にサンプルをサンプリングする条件付き拡散モデルのブレークスルー能力は、概念的には不確実性の推定を簡単化している。
残念ながら、そのようなアンサンブルの訓練は、モデルアーキテクチャの複雑さが増大するにつれて、計算的に難解になる。
本研究では, 一つのモデルを用いて, 上皮性および動脈性不確実性の両方を正確に推定できるハイパー拡散モデル (HyperDM) の新たなアプローチを提案する。
モンテカルロのドロップアウトやベイジアンニューラルネットワークのような既存の単一モデル不確実性手法とは異なり、HyperDMは予測精度を提供し、場合によってはマルチモデルアンサンブルよりも優れている。
さらに,提案手法は,注意U-Netなどの最新のネットワークアーキテクチャにスケールし,既存の手法と比較して精度の高い不確実性推定を行う。
我々は,X線CTと気象温度予測の2つの異なる実世界の課題に対して,本手法の有効性を検証した。
関連論文リスト
- Zero-Shot Uncertainty Quantification using Diffusion Probabilistic Models [7.136205674624813]
拡散モデルを用いて異なる回帰問題の解法におけるアンサンブル法の有効性を評価する。
本研究では,様々な回帰タスクにおいて,アンサンブル手法がモデル予測精度を一貫して向上することを実証する。
本研究は,拡散アンサンブルの有用性を包括的に把握し,回帰問題解決における拡散モデルを用いた実践者にとって有用な参考となる。
論文 参考訳(メタデータ) (2024-08-08T18:34:52Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
感染パラメータの確率密度を学習する問題に対して,新しい強力な計算手法を適用した。
ニューラルネットワークを用いて、2020年にベルリンで発生した新型コロナウイルスの感染拡大に関するデータにODEモデルを調整します。
本手法は,感染の簡易SIRモデルにおいて,本手法の真の後部への収束を示すとともに,縮小データセット上での学習能力を実証する。
論文 参考訳(メタデータ) (2023-12-05T21:34:59Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
不確実性は時系列予測タスクに不可欠な考慮事項である。
本研究では,交通予測の不確かさの定量化に焦点をあてる。
STUQ(Deep S-Temporal Uncertainity Quantification)を開発した。
論文 参考訳(メタデータ) (2022-08-11T15:21:53Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning [14.03923026690186]
本研究では,予測の不確かさを推定できる不確実性を考慮した深層カーネル学習モデルを提案する。
ほとんどの場合、提案したモデルは一般的なアーキテクチャよりも優れた性能を示している。
私たちのモデルは、挑戦的で議論の余地のあるテストサンプルを検出するためにも使用できます。
論文 参考訳(メタデータ) (2021-06-01T17:09:47Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
ニューラルネットワークにおけるドロップアウト層に対するサンプリング分布の変更により,不確実性評価の品質が向上することを示す。
主要なアイデアは、ニューロン間のデータ駆動相関を計算し、最大多様なニューロンを含むサンプルを生成する、という2つの主要なステップで構成されています。
論文 参考訳(メタデータ) (2020-03-06T15:20:04Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。