論文の概要: nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark
Detection with State Space Model
- arxiv url: http://arxiv.org/abs/2402.03526v2
- Date: Sun, 10 Mar 2024 07:13:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 14:20:06.810877
- Title: nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark
Detection with State Space Model
- Title(参考訳): nnmamba: 状態空間モデルを用いた3次元生体医用画像分割,分類,ランドマーク検出
- Authors: Haifan Gong, Luoyao Kang, Yitao Wang, Xiang Wan, Haofeng Li
- Abstract要約: 本稿では、CNNの強みとステートスペースシーケンスモデル(SSM)の高度な長距離モデリング機能を統合する新しいアーキテクチャであるnnMambaを紹介する。
6つのデータセットの実験では、3D画像のセグメンテーション、分類、ランドマーク検出など、一連の困難なタスクにおいて、nnMambaが最先端のメソッドよりも優れていることが示されている。
- 参考スコア(独自算出の注目度): 24.955052600683423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of biomedical image analysis, the quest for architectures
capable of effectively capturing long-range dependencies is paramount,
especially when dealing with 3D image segmentation, classification, and
landmark detection. Traditional Convolutional Neural Networks (CNNs) struggle
with locality respective field, and Transformers have a heavy computational
load when applied to high-dimensional medical images.In this paper, we
introduce nnMamba, a novel architecture that integrates the strengths of CNNs
and the advanced long-range modeling capabilities of State Space Sequence
Models (SSMs). Specifically, we propose the Mamba-In-Convolution with
Channel-Spatial Siamese learning (MICCSS) block to model the long-range
relationship of the voxels. For the dense prediction and classification tasks,
we also design the channel-scaling and channel-sequential learning methods.
Extensive experiments on 6 datasets demonstrate nnMamba's superiority over
state-of-the-art methods in a suite of challenging tasks, including 3D image
segmentation, classification, and landmark detection. nnMamba emerges as a
robust solution, offering both the local representation ability of CNNs and the
efficient global context processing of SSMs, setting a new standard for
long-range dependency modeling in medical image analysis. Code is available at
https://github.com/lhaof/nnMamba
- Abstract(参考訳): バイオメディカル画像解析の分野では、特に3次元画像のセグメンテーション、分類、ランドマーク検出を扱う場合、長距離依存を効果的に把握できるアーキテクチャの探求が最重要である。
従来の畳み込みニューラルネットワーク(CNN)は各フィールドの局所性に悩まされており,高次元の医療画像に適用する場合,トランスフォーマーは計算負荷が大きい。この記事では,CNNの強みとステートスペースシーケンスモデル(SSM)の高度な長距離モデリング機能を統合する新しいアーキテクチャであるnnMambaを紹介する。
具体的には,Voxelの長距離関係をモデル化するために,Mamba-In-Convolution with Channel-Spatial Siamese Learning (MICCSS)ブロックを提案する。
密集した予測と分類タスクのために,チャネルスケーリング法とチャネル系列学習法も設計する。
6つのデータセットに関する広範囲な実験により、nnmambaは3d画像分割、分類、ランドマーク検出を含む一連の困難なタスクにおいて最先端の手法よりも優れていることが示されている。
nnmambaはロバストなソリューションとして登場し、cnnのローカル表現能力とssmsの効率的なグローバルコンテキスト処理を提供し、医療画像解析における長距離依存性モデリングの新しい標準を設定する。
コードはhttps://github.com/lhaof/nnMambaで入手できる。
関連論文リスト
- EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation [3.6813810514531085]
我々は,EM-Netと呼ばれる新しい3次元医用画像セグメンテーションモデルを紹介し,その成功に触発されて,新しいマンバベースの3次元医用画像セグメンテーションモデルであるEM-Netを紹介した。
提案手法は,SOTAモデルのパラメータサイズをほぼ半分にし,訓練速度を2倍に向上させながら,より高精度なセグメンテーション精度を示すことを示す。
論文 参考訳(メタデータ) (2024-09-26T09:34:33Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling [8.48392350084504]
本稿では,医用画像合成のための新しい敵対モデルI2I-Mambaを提案する。
I2I-Mambaは、ターゲットモダリティ画像の合成における最先端CNNおよびトランスフォーマーベースの手法に対して優れた性能を提供する。
論文 参考訳(メタデータ) (2024-05-22T21:55:58Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
医用画像セグメンテーションのためのU字型アーキテクチャモデルVision Mamba UNet(VM-UNet)を提案する。
我々はISIC17,ISIC18,Synapseデータセットの総合的な実験を行い,VM-UNetが医用画像分割タスクにおいて競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-04T13:37:21Z) - U-Mamba: Enhancing Long-range Dependency for Biomedical Image
Segmentation [10.083902382768406]
バイオメディカルイメージセグメンテーションのための汎用ネットワークであるU-Mambaを紹介する。
ディープシークエンスモデルの新たなファミリーであるState Space Sequence Models (SSM) にインスパイアされ、我々はハイブリッドCNN-SSMブロックを設計する。
我々は,CTおよびMR画像における腹部臓器の3次元分節化,内視鏡画像における計器の分節化,顕微鏡画像における細胞分節化の4つの課題について実験を行った。
論文 参考訳(メタデータ) (2024-01-09T18:53:20Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。