論文の概要: ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation
- arxiv url: http://arxiv.org/abs/2408.14114v1
- Date: Mon, 26 Aug 2024 08:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:33:14.537103
- Title: ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation
- Title(参考訳): ShapeMamba-EM:3次元EM画像分割のための局所形状記述子とマンバブロックを用いたファインチューニング基礎モデル
- Authors: Ruohua Shi, Qiufan Pang, Lei Ma, Lingyu Duan, Tiejun Huang, Tingting Jiang,
- Abstract要約: 本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
- 参考スコア(独自算出の注目度): 49.42525661521625
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electron microscopy (EM) imaging offers unparalleled resolution for analyzing neural tissues, crucial for uncovering the intricacies of synaptic connections and neural processes fundamental to understanding behavioral mechanisms. Recently, the foundation models have demonstrated impressive performance across numerous natural and medical image segmentation tasks. However, applying these foundation models to EM segmentation faces significant challenges due to domain disparities. This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation, which employs adapters for long-range dependency modeling and an encoder for local shape description within the original foundation model. This approach effectively addresses the unique volumetric and morphological complexities of EM data. Tested over a wide range of EM images, covering five segmentation tasks and 10 datasets, ShapeMamba-EM outperforms existing methods, establishing a new standard in EM image segmentation and enhancing the understanding of neural tissue architecture.
- Abstract(参考訳): 電子顕微鏡(EM)イメージング(Electron Microscopy)は、神経組織を解析するための非並列分解能を提供する。
近年,多くの自然・医用画像セグメンテーションタスクにおいて,基礎モデルが顕著な性能を示した。
しかし、これらの基礎モデルをEMセグメンテーションに適用することは、ドメインの相違により大きな課題に直面している。
本稿では,3次元EMセグメンテーションのための特殊な微調整手法であるShapeMamba-EMについて述べる。
このアプローチは、EMデータのユニークな体積と形態の複雑さに効果的に対処する。
5つのセグメンテーションタスクと10のデータセットをカバーする幅広いEMイメージでテストされたShapeMamba-EMは、既存の手法よりも優れており、EMイメージセグメンテーションの新しい標準を確立し、神経組織アーキテクチャの理解を深めている。
関連論文リスト
- MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation [3.2846676620336632]
眼科画像分割は眼疾患の診断において重要な基礎となる。
トランスフォーマーベースのモデルはこれらの制限に対処するが、かなりの計算オーバーヘッドをもたらす。
本稿では,眼内画像分割に適したMixedモデルであるMM-UNetを紹介する。
論文 参考訳(メタデータ) (2024-08-16T08:34:50Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - GPU-Accelerated RSF Level Set Evolution for Large-Scale Microvascular Segmentation [2.5003043942194236]
本稿では,地域スケーラブルフィッティング(RSF)レベルセットモデルの改訂と実装を提案する。
これにより、単命令多重データ(SIMD)と単プログラム多重データ(SPMD)並列処理の両方を用いて3次元評価が可能となる。
我々は、最先端イメージング技術を用いて取得した複数のデータセットに対して、この3次元並列RSF手法を用いて、微小血管データを取得することを試みた。
論文 参考訳(メタデータ) (2024-04-03T15:37:02Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark
Detection with State Space Model [24.955052600683423]
本稿では、CNNの強みとステートスペースシーケンスモデル(SSM)の高度な長距離モデリング機能を統合する新しいアーキテクチャであるnnMambaを紹介する。
6つのデータセットの実験では、3D画像のセグメンテーション、分類、ランドマーク検出など、一連の困難なタスクにおいて、nnMambaが最先端のメソッドよりも優れていることが示されている。
論文 参考訳(メタデータ) (2024-02-05T21:28:47Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
病理組織像における教師なし核分割のためのCycle Consistency Panoptic Domain Adaptive Mask R-CNN(CyC-PDAM)アーキテクチャを提案する。
まず,合成画像中の補助的な生成物を除去するための核塗布機構を提案する。
第二に、ドメイン識別器を持つセマンティックブランチは、パンプトレベルのドメイン適応を実現するように設計されている。
論文 参考訳(メタデータ) (2020-05-05T11:08:26Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。