Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems
- URL: http://arxiv.org/abs/2410.11158v1
- Date: Tue, 15 Oct 2024 00:48:01 GMT
- Title: Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems
- Authors: Yinan Chen, Andreas Elben, Angel Rubio, Gil Refael,
- Abstract summary: Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
- Score: 1.2499537119440245
- License:
- Abstract: Quantum-enhanced sensors, which surpass the standard quantum limit (SQL) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields. This quantum advantage becomes particularly significant when a large number of particles are included in the sensing circuit. Achieving such enhancement requires introducing and preserving entanglement among many particles, posing significant experimental challenges. In this work, we integrate concepts from Floquet theory and quantum information to design an entangler capable of generating the desired entanglement between two paths of a quantum interferometer. We demonstrate that our path-entangled states enable sensing beyond the SQL, reaching the fundamental Heisenberg limit (HL) of quantum mechanics. Moreover, we show that a decoding parity measurement maintains the HL when specific conditions from Floquet theory are satisfied$\unicode{x2013}$particularly those related to the periodic driving parameters that preserve entanglement during evolution. We address the effects of a priori phase uncertainty and imperfect transmission, showing that our method remains robust under realistic conditions. Finally, we propose a superconducting-circuit implementation of our sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Entanglement-enhanced quantum metrology: from standard quantum limit to Heisenberg limit [0.0]
Entanglement-enhanced quantum metrology explores the utilization of quantum entanglement to enhance measurement precision.
The rapid advancement of techniques for quantum manipulation and detection has enabled the generation, manipulation, and detection of multi-particle entangled states.
arXiv Detail & Related papers (2024-02-05T22:46:38Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Critical sensing with a single bosonic mode without boson-boson interactions [3.8795402651871984]
We propose a simple critical quantum sensing scheme that requires neither of these conditions.
The scheme can be realized in different systems, e.g., ion traps and superconducting circuits.
arXiv Detail & Related papers (2023-05-28T07:45:34Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Criticality-Enhanced Quantum Sensing via Continuous Measurement [1.433758865948252]
We propose a protocol for criticality-enhanced sensing via continuous observation of the emitted radiation quanta.
We derive universal scaling laws featuring transient and long-time behavior governed by the underlying critical exponents.
Our protocol is applicable to generic quantum-optical open sensors permitting continuous readout.
arXiv Detail & Related papers (2021-08-13T18:01:02Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Integrable quantum many-body sensors for AC field sensing [0.0]
We show that integrable many-body systems can be exploited efficiently for detecting the amplitude of an AC field.
We show that the proposed protocol can also be realized in near-term quantum simulators.
arXiv Detail & Related papers (2021-05-27T23:52:22Z) - Quantum limits for stationary force sensing [0.0]
State-of-the-art sensors have reached the sensitivity where the quantum noise of the meter is significant or even dominant.
In particular, the sensitivity of the best optomechanical devices has reached the Standard Quantum Limit.
Here we develop a unified theory of these two fundamental limits by deriving the general sensitivity constraint.
arXiv Detail & Related papers (2020-11-30T11:58:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.