論文の概要: Assessing the Impact of Distribution Shift on Reinforcement Learning
Performance
- arxiv url: http://arxiv.org/abs/2402.03590v1
- Date: Mon, 5 Feb 2024 23:50:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 17:37:01.197420
- Title: Assessing the Impact of Distribution Shift on Reinforcement Learning
Performance
- Title(参考訳): 分散シフトが強化学習性能に及ぼす影響の評価
- Authors: Ted Fujimoto and Joshua Suetterlein and Samrat Chatterjee and Auroop
Ganguly
- Abstract要約: 強化学習(RL)は独自の課題に直面する。
点推定と訓練中の最適方針への収束を成功させるプロットの比較は、実験装置への過度な適合や依存を阻害する可能性がある。
本稿では,分散シフト下でのRLアルゴリズムのロバスト性を評価するための評価手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in machine learning is making progress in fixing its own
reproducibility crisis. Reinforcement learning (RL), in particular, faces its
own set of unique challenges. Comparison of point estimates, and plots that
show successful convergence to the optimal policy during training, may
obfuscate overfitting or dependence on the experimental setup. Although
researchers in RL have proposed reliability metrics that account for
uncertainty to better understand each algorithm's strengths and weaknesses, the
recommendations of past work do not assume the presence of out-of-distribution
observations. We propose a set of evaluation methods that measure the
robustness of RL algorithms under distribution shifts. The tools presented here
argue for the need to account for performance over time while the agent is
acting in its environment. In particular, we recommend time series analysis as
a method of observational RL evaluation. We also show that the unique
properties of RL and simulated dynamic environments allow us to make stronger
assumptions to justify the measurement of causal impact in our evaluations. We
then apply these tools to single-agent and multi-agent environments to show the
impact of introducing distribution shifts during test time. We present this
methodology as a first step toward rigorous RL evaluation in the presence of
distribution shifts.
- Abstract(参考訳): 機械学習の研究は、独自の再現性危機の解決に進歩している。
特に強化学習(rl)は、独自の課題に直面している。
訓練中の最適方針への収束性を示す点推定とプロットの比較は、オーバーフィットや実験的な設定への依存を遠ざける可能性がある。
RLの研究者は、各アルゴリズムの強みと弱みをよりよく理解するために不確実性を説明する信頼性指標を提案しているが、過去の研究の推奨は、分布外観測の存在を前提としていない。
本稿では,分散シフト時のrlアルゴリズムのロバスト性を測定する評価手法を提案する。
ここで提示されるツールは、エージェントがその環境で動作している間に、時間とともにパフォーマンスを考慮する必要があると主張している。
特に,観測rlの評価方法としては時系列解析を推奨する。
また、RLとシミュレーションされた動的環境のユニークな性質は、評価における因果影響の測定を正当化するために、より強い仮定をすることができることを示す。
次に、これらのツールを単エージェントおよびマルチエージェント環境に適用し、テスト時間中に分散シフトを導入する影響を示す。
本手法は,分布シフトの存在下での厳密なrl評価への第一歩として提案する。
関連論文リスト
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
我々は,MARLHF(Multi-Agent Reinforcement Learning from Human Feedback)について検討し,理論的基礎と実証的検証の両方について検討した。
我々は,このタスクを,一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ均衡を識別するものとして定義する。
本研究は,MARLHFの多面的アプローチを基礎として,効果的な嗜好に基づくマルチエージェントシステムの実現を目指している。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
論文 参考訳(メタデータ) (2024-03-18T14:51:19Z) - Exploiting Estimation Bias in Clipped Double Q-Learning for Continous Control Reinforcement Learning Tasks [5.968716050740402]
本稿では,連続制御タスクに対するアクター・クライブ法における推定バイアスの対処と活用に焦点を当てた。
RLエージェントのトレーニング中に最も有利な推定バイアスを動的に選択するためのBias Exploiting (BE) 機構を設計する。
多くの最先端のDeep RLアルゴリズムはBE機構を備えており、性能や計算の複雑さを妨げない。
論文 参考訳(メタデータ) (2024-02-14T10:44:03Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Taming Multi-Agent Reinforcement Learning with Estimator Variance
Reduction [12.94372063457462]
分散実行(CT-DE)による集中トレーニングは、多くの主要なマルチエージェント強化学習(MARL)アルゴリズムの基礎となっている。
特定の状態における共同行動の単一のサンプルから学ぶことに依存しているため、これは重大な欠点に悩まされる。
本稿では,アクター・クリティカルなMARL法に対応する拡張ツールを提案する。
論文 参考訳(メタデータ) (2022-09-02T13:44:00Z) - Exploring the Training Robustness of Distributional Reinforcement
Learning against Noisy State Observations [7.776010676090131]
エージェントが観察する状態の観察は、測定誤差や敵のノイズを含んでおり、エージェントが最適な行動を取るように誤解したり、訓練中に崩壊することもある。
本稿では,本研究の成果である分散強化学習(RL)のトレーニングロバスト性について検討する。
論文 参考訳(メタデータ) (2021-09-17T22:37:39Z) - Deep Reinforcement Learning at the Edge of the Statistical Precipice [31.178451465925555]
深部RL体制下での信頼性評価は、現場の進捗を遅らせるリスクを負うことなく、結果の不確かさを無視することはできないと論じる。
我々は,集計性能の時間間隔推定を提唱し,結果の変動性を考慮した性能プロファイルを提案する。
論文 参考訳(メタデータ) (2021-08-30T14:23:48Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
オフライン強化学習は、探索を必要とせずに、事前に収集された静的データセットから効果的なポリシーを学ぶことを約束する。
既存のQラーニングとアクター批判に基づくオフポリティクスRLアルゴリズムは、アウト・オブ・ディストリビューション(OOD)アクションや状態からのブートストラップ時に失敗する。
我々は,OOD状態-動作ペアを検出し,トレーニング目標への貢献度を下げるアルゴリズムであるUncertainty Weighted Actor-Critic (UWAC)を提案する。
論文 参考訳(メタデータ) (2021-05-17T20:16:46Z) - Instabilities of Offline RL with Pre-Trained Neural Representation [127.89397629569808]
オフライン強化学習(RL)では、オフラインデータを利用して、評価対象のポリシーのそれとは大きく異なる分布からデータが収集されるシナリオでポリシーを評価する(または学習する)ことを目指しています。
最近の理論的進歩は、そのようなサンプル効率の良いオフラインRLが確かにある強い表現条件が保持されることを示した。
本研究は,オフラインrlメソッドの安定性を評価するために,経験的視点からこれらの問題を考察する。
論文 参考訳(メタデータ) (2021-03-08T18:06:44Z) - Causal Inference Q-Network: Toward Resilient Reinforcement Learning [57.96312207429202]
観測干渉を有する弾力性のあるDRLフレームワークを検討する。
本稿では、因果推論Q-network (CIQ) と呼ばれる因果推論に基づくDRLアルゴリズムを提案する。
実験の結果,提案手法は観測干渉に対して高い性能と高反発性を実現することができた。
論文 参考訳(メタデータ) (2021-02-18T23:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。