Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
- URL: http://arxiv.org/abs/2402.03614v2
- Date: Fri, 24 May 2024 01:40:45 GMT
- Title: Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
- Authors: He Zhao, Vassili Kitsios, Terence J. O'Kane, Edwin V. Bonilla,
- Abstract summary: We study the problem of automatically discovering Granger causal relations from observational time-series data.
We propose a new Bayesian VAR model with a hierarchical factorised prior distribution over binary Granger causal graphs.
We develop an efficient algorithm to infer the posterior over binary Granger causal graphs.
- Score: 10.030023978159978
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the problem of automatically discovering Granger causal relations from observational multivariate time-series data.Vector autoregressive (VAR) models have been time-tested for this problem, including Bayesian variants and more recent developments using deep neural networks. Most existing VAR methods for Granger causality use sparsity-inducing penalties/priors or post-hoc thresholds to interpret their coefficients as Granger causal graphs. Instead, we propose a new Bayesian VAR model with a hierarchical factorised prior distribution over binary Granger causal graphs, separately from the VAR coefficients. We develop an efficient algorithm to infer the posterior over binary Granger causal graphs. Comprehensive experiments on synthetic, semi-synthetic, and climate data show that our method is more uncertainty aware, has less hyperparameters, and achieves better performance than competing approaches, especially in low-data regimes where there are less observations.
Related papers
- Jacobian Regularizer-based Neural Granger Causality [45.902407376192656]
We propose a Jacobian Regularizer-based Neural Granger Causality (JRNGC) approach.
Our method eliminates the sparsity constraints of weights by leveraging an input-output Jacobian matrix regularizer.
Our proposed approach achieves competitive performance with the state-of-the-art methods for learning summary Granger causality and full-time Granger causality.
arXiv Detail & Related papers (2024-05-14T17:13:50Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
We propose a deep learning-based approach to model non-linear Granger causality by directly accounting for latent confounders.
We demonstrate the model performance on non-linear time series for which the latent confounder influences the cause and effect with different time lags.
arXiv Detail & Related papers (2022-02-23T03:26:22Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
In graph-structured data, structured sparsity and smoothness tend to cluster together.
We propose a new prior for high dimensional parameters with graphical relations.
We use it to detect structured sparsity and smoothness simultaneously.
arXiv Detail & Related papers (2021-07-06T10:10:03Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
arXiv Detail & Related papers (2021-01-07T02:28:49Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z) - Dynamic Window-level Granger Causality of Multi-channel Time Series [28.302491046127443]
We present the dynamic window-level Granger causality method (DWGC) for multi-channel time series data.
We propose the causality indexing trick in our DWGC method to reweight the original time series data.
arXiv Detail & Related papers (2020-06-14T03:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.