Identification of Latent Variables From Graphical Model Residuals
- URL: http://arxiv.org/abs/2101.02332v1
- Date: Thu, 7 Jan 2021 02:28:49 GMT
- Title: Identification of Latent Variables From Graphical Model Residuals
- Authors: Boris Hayete, Fred Gruber, Anna Decker, Raymond Yan
- Abstract summary: We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based causal discovery methods aim to capture conditional
independencies consistent with the observed data and differentiate causal
relationships from indirect or induced ones. Successful construction of
graphical models of data depends on the assumption of causal sufficiency: that
is, that all confounding variables are measured. When this assumption is not
met, learned graphical structures may become arbitrarily incorrect and effects
implied by such models may be wrongly attributed, carry the wrong magnitude, or
mis-represent direction of correlation. Wide application of graphical models to
increasingly less curated "big data" draws renewed attention to the unobserved
confounder problem.
We present a novel method that aims to control for the latent space when
estimating a DAG by iteratively deriving proxies for the latent space from the
residuals of the inferred model. Under mild assumptions, our method improves
structural inference of Gaussian graphical models and enhances identifiability
of the causal effect. In addition, when the model is being used to predict
outcomes, it un-confounds the coefficients on the parents of the outcomes and
leads to improved predictive performance when out-of-sample regime is very
different from the training data. We show that any improvement of prediction of
an outcome is intrinsically capped and cannot rise beyond a certain limit as
compared to the confounded model. We extend our methodology beyond GGMs to
ordinal variables and nonlinear cases. Our R package provides both PCA and
autoencoder implementations of the methodology, suitable for GGMs with some
guarantees and for better performance in general cases but without such
guarantees.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation [0.0]
The Gaussian Process (GP) is a flexible non-linear regression approach.
It provides a principled approach to handling our uncertainty over predicted (counterfactual) values.
This is especially valuable under conditions of extrapolation or weak overlap.
arXiv Detail & Related papers (2024-07-15T05:09:50Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
We train a supervised model that learns to predict a larger causal graph from the outputs of classical causal discovery algorithms run over subsets of variables.
Our approach is enabled by the observation that typical errors in the outputs of classical methods remain comparable across datasets.
Experiments on real and synthetic data demonstrate that this model maintains high accuracy in the face of misspecification or distribution shift.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - BayesDAG: Gradient-Based Posterior Inference for Causal Discovery [30.027520859604955]
We introduce a scalable causal discovery framework based on a combination of Markov Chain Monte Carlo and Variational Inference.
Our approach directly samples DAGs from the posterior without requiring any DAG regularization.
We derive a novel equivalence to the permutation-based DAG learning, which opens up possibilities of using any relaxed estimator defined over permutations.
arXiv Detail & Related papers (2023-07-26T02:34:13Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
Causal graphs (CGs) are compact representations of the knowledge of the data generating processes behind the data distributions.
We propose a model-agnostic data augmentation method that allows us to exploit the prior knowledge of the conditional independence (CI) relations.
We experimentally show that the proposed method is effective in improving the prediction accuracy, especially in the small-data regime.
arXiv Detail & Related papers (2021-02-27T06:13:59Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables [13.299431908881425]
Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs is well studied.
corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output.
We bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome.
arXiv Detail & Related papers (2020-03-27T22:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.