論文の概要: QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning
- arxiv url: http://arxiv.org/abs/2402.03666v3
- Date: Fri, 6 Sep 2024 02:02:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 20:43:32.696030
- Title: QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning
- Title(参考訳): QuEST: 効率的な選択ファインタニングによる低ビット拡散モデル量子化
- Authors: Haoxuan Wang, Yuzhang Shang, Zhihang Yuan, Junyi Wu, Junchi Yan, Yan Yan,
- Abstract要約: 本稿では,現行手法の有効性を損なう量子拡散モデルの3つの特性を実証的に明らかにする。
重要な時間的情報を保持する層と、ビット幅の低減に敏感な層という、2つの重要なタイプの量子化層を同定する。
提案手法は,3つの高分解能画像生成タスクに対して評価し,様々なビット幅設定で最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 52.157939524815866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The practical deployment of diffusion models still suffers from the high memory and time overhead. While quantization paves a way for compression and acceleration, existing methods unfortunately fail when the models are quantized to low-bits. In this paper, we empirically unravel three properties in quantized diffusion models that compromise the efficacy of current methods: imbalanced activation distributions, imprecise temporal information, and vulnerability to perturbations of specific modules. To alleviate the intensified low-bit quantization difficulty stemming from the distribution imbalance, we propose finetuning the quantized model to better adapt to the activation distribution. Building on this idea, we identify two critical types of quantized layers: those holding vital temporal information and those sensitive to reduced bit-width, and finetune them to mitigate performance degradation with efficiency. We empirically verify that our approach modifies the activation distribution and provides meaningful temporal information, facilitating easier and more accurate quantization. Our method is evaluated over three high-resolution image generation tasks and achieves state-of-the-art performance under various bit-width settings, as well as being the first method to generate readable images on full 4-bit (i.e. W4A4) Stable Diffusion. Code is available \href{https://github.com/hatchetProject/QuEST}{here}.
- Abstract(参考訳): 拡散モデルの実践的な展開は、依然として高いメモリと時間オーバーヘッドに悩まされている。
量子化は圧縮と加速の道を開くが、既存の方法は残念ながら、モデルが低ビットに量子化されると失敗する。
本稿では,現行手法の有効性を損なう量子拡散モデルにおいて,不均衡な活性化分布,不正確な時間情報,特定のモジュールの摂動に対する脆弱性の3つの特性を実証的に明らかにする。
分散不均衡に起因する高密度低ビット量子化の難しさを軽減するために,活性化分布に適応するために,量子化モデルを微調整することを提案する。
このアイデアに基づいて、重要な時間情報を持つ層と、ビット幅の低減に敏感な層とを識別し、性能劣化を効率よく軽減する。
提案手法がアクティベーション分布を変化させ、意味のある時間情報を提供し、より簡単で正確な量子化を容易にすることを実証的に検証する。
提案手法は,3つの高解像度画像生成タスクに対して評価され,様々なビット幅設定下での最先端性能を実現するとともに,フル4ビット(すなわちW4A4)の安定拡散で読みやすい画像を生成する最初の方法である。
コードは href{https://github.com/hatchetProject/QuEST}{here} で入手できる。
関連論文リスト
- DilateQuant: Accurate and Efficient Diffusion Quantization via Weight Dilation [3.78219736760145]
拡散モデルの量子化はモデルを圧縮し加速する有望な方法である。
既存の方法は、低ビット量子化のために、精度と効率の両方を同時に維持することはできない。
拡散モデルのための新しい量子化フレームワークであるDilateQuantを提案する。
論文 参考訳(メタデータ) (2024-09-22T04:21:29Z) - Timestep-Aware Correction for Quantized Diffusion Models [28.265582848911574]
本稿では,量子化誤差を動的に補正する量子化拡散モデルの時間ステップ対応補正法を提案する。
提案手法を低精度拡散モデルに応用することにより,出力品質の大幅な向上が期待できる。
論文 参考訳(メタデータ) (2024-07-04T13:22:31Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。