論文の概要: PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks
- arxiv url: http://arxiv.org/abs/2404.00103v1
- Date: Fri, 29 Mar 2024 18:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 07:17:12.635659
- Title: PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks
- Title(参考訳): PikeLPN:低精度ニューラルネットワークの不効率の軽減
- Authors: Marina Neseem, Conor McCullough, Randy Hsin, Chas Leichner, Shan Li, In Suk Chong, Andrew G. Howard, Lukasz Lew, Sherief Reda, Ville-Mikko Rautio, Daniele Moro,
- Abstract要約: 非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
- 参考スコア(独自算出の注目度): 4.827161693957252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-precision quantization is recognized for its efficacy in neural network optimization. Our analysis reveals that non-quantized elementwise operations which are prevalent in layers such as parameterized activation functions, batch normalization, and quantization scaling dominate the inference cost of low-precision models. These non-quantized elementwise operations are commonly overlooked in SOTA efficiency metrics such as Arithmetic Computation Effort (ACE). In this paper, we propose ACEv2 - an extended version of ACE which offers a better alignment with the inference cost of quantized models and their energy consumption on ML hardware. Moreover, we introduce PikeLPN, a model that addresses these efficiency issues by applying quantization to both elementwise operations and multiply-accumulate operations. In particular, we present a novel quantization technique for batch normalization layers named QuantNorm which allows for quantizing the batch normalization parameters without compromising the model performance. Additionally, we propose applying Double Quantization where the quantization scaling parameters are quantized. Furthermore, we recognize and resolve the issue of distribution mismatch in Separable Convolution layers by introducing Distribution-Heterogeneous Quantization which enables quantizing them to low-precision. PikeLPN achieves Pareto-optimality in efficiency-accuracy trade-off with up to 3X efficiency improvement compared to SOTA low-precision models.
- Abstract(参考訳): 低精度量子化は、ニューラルネットワーク最適化における有効性として認識されている。
本稿では,パラメータ化アクティベーション関数やバッチ正規化,量子化スケーリングなどのレイヤで有効な非量子化要素演算が,低精度モデルの推論コストを支配していることを示す。
これらの非量子化要素演算は、一般に、Arithmetic Computation Effort (ACE)のようなSOTA効率指標で見過ごされる。
本稿では,数量化モデルの推論コストとMLハードウェア上でのエネルギー消費との整合性を向上するACEv2を提案する。
さらに、要素演算と乗算演算の両方に量子化を適用することにより、これらの効率問題に対処するモデルであるPikeLPNを導入する。
特に,QuantNormと呼ばれるバッチ正規化層に対して,モデル性能を損なうことなく,バッチ正規化パラメータを定量化する新しい量子化手法を提案する。
さらに、量子化スケーリングパラメータを量子化するDouble Quantizationを提案する。
さらに、分割可能な畳み込み層における分布ミスマッチの問題を、低精度で定量化できる分布不均一量子化を導入して解決する。
PikeLPNはSOTAの低精度モデルと比較して最大3倍の効率向上を実現した。
関連論文リスト
- QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
量子化は、推論を加速し、大きな言語モデルのメモリ消費を減らすために、実質的に採用されている。
本稿では、投機的復号化のための2つの相補的量子化スキームをシームレスに統合するQSPECと呼ばれる新しい量子化パラダイムを提案する。
QSPECは、品質上の妥協なしにトークン生成スループットを最大1.80倍向上させる。
論文 参考訳(メタデータ) (2024-10-15T05:57:51Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-02-19T11:33:21Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
量子ニューラルネットワークは、レイテンシ、消費電力、モデルサイズをパフォーマンスに大きな影響を与えずに減少させることでよく知られている。
混合精度量子化は、異なるビット幅での算術演算をサポートするカスタマイズされたハードウェアのより良い利用を提供する。
論文 参考訳(メタデータ) (2022-05-30T21:23:22Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Q-Rater: Non-Convex Optimization for Post-Training Uniform Quantization [9.062897838978955]
様々な訓練後の量子一様化法は通常凸最適化に基づいている。
提案手法は,特に低量子化の場合,高いモデル精度を示す。
論文 参考訳(メタデータ) (2021-05-05T05:14:22Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - AUSN: Approximately Uniform Quantization by Adaptively Superimposing
Non-uniform Distribution for Deep Neural Networks [0.7378164273177589]
既存の一様および非一様量子化法は、表現範囲と表現解像度の間に固有の矛盾を示す。
重みとアクティベーションを定量化する新しい量子化法を提案する。
鍵となる考え方は、複数の非一様量子化値、すなわち AUSN を適応的に重ね合わせることで、ユニフォーム量子化を近似することである。
論文 参考訳(メタデータ) (2020-07-08T05:10:53Z) - VecQ: Minimal Loss DNN Model Compression With Vectorized Weight
Quantization [19.66522714831141]
我々は、最小の直接量子化損失とモデル精度を保証できるVecQと呼ばれる新しい量子化ソリューションを開発した。
また,学習中に提案した量子化過程を高速化するために,パラメータ化推定と確率ベース計算を用いて量子化過程を高速化する。
論文 参考訳(メタデータ) (2020-05-18T07:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。