論文の概要: QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning
- arxiv url: http://arxiv.org/abs/2402.03666v4
- Date: Thu, 26 Jun 2025 17:36:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:09.749432
- Title: QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning
- Title(参考訳): QuEST: 効率的な選択ファインタニングによる低ビット拡散モデル量子化
- Authors: Haoxuan Wang, Yuzhang Shang, Zhihang Yuan, Junyi Wu, Junchi Yan, Yan Yan,
- Abstract要約: 本稿では,不均衡な活性化分布を量子化困難の原因として同定する。
我々は,これらの分布を,より量子化しやすいように微調整することで調整することを提案する。
本手法は3つの高解像度画像生成タスクに対して有効性を示す。
- 参考スコア(独自算出の注目度): 52.157939524815866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The practical deployment of diffusion models is still hindered by the high memory and computational overhead. Although quantization paves a way for model compression and acceleration, existing methods face challenges in achieving low-bit quantization efficiently. In this paper, we identify imbalanced activation distributions as a primary source of quantization difficulty, and propose to adjust these distributions through weight finetuning to be more quantization-friendly. We provide both theoretical and empirical evidence supporting finetuning as a practical and reliable solution. Building on this approach, we further distinguish two critical types of quantized layers: those responsible for retaining essential temporal information and those particularly sensitive to bit-width reduction. By selectively finetuning these layers under both local and global supervision, we mitigate performance degradation while enhancing quantization efficiency. Our method demonstrates its efficacy across three high-resolution image generation tasks, obtaining state-of-the-art performance across multiple bit-width settings.
- Abstract(参考訳): 拡散モデルの実践的な展開は、依然として高いメモリと計算オーバーヘッドによって妨げられている。
量子化はモデル圧縮と加速の方法であるが、既存の手法は効率よく低ビット量子化を実現する上で困難に直面している。
本稿では,不均衡な活性化分布を量子化困難の原因として同定し,これらの分布をより量子化しやすいように微調整することで調整することを提案する。
ファインタニングを実用的で信頼性の高いソリューションとして支持する理論的証拠と実証的証拠の両方を提供する。
このアプローチに基づいて、本質的な時間情報の保持に責任を持つ層と、特にビット幅減少に敏感な層とを区別する。
これらの層を局所的・大域的な監督下で選択的に微調整することにより、量子化効率を高めながら性能劣化を緩和する。
提案手法は,3つの高解像度画像生成タスクに対して有効性を示し,複数のビット幅設定における最先端性能を得る。
関連論文リスト
- TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models [49.65286242048452]
拡散モデル(TCAQ-DM)のためのタイムステップ・チャネル適応量子化法を提案する。
提案手法は,ほとんどの場合,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-12-21T16:57:54Z) - MPQ-DM: Mixed Precision Quantization for Extremely Low Bit Diffusion Models [37.061975191553]
本稿では,拡散モデルのための混合精度量子化法MPQ-DMを提案する。
重み付き外周波による量子化誤差を軽減するために,外周波混合量子化手法を提案する。
時間ステップを横断する表現を頑健に学習するために,時間-平滑な関係蒸留方式を構築した。
論文 参考訳(メタデータ) (2024-12-16T08:31:55Z) - DilateQuant: Accurate and Efficient Diffusion Quantization via Weight Dilation [3.78219736760145]
拡散モデルの量子化はモデルを圧縮し加速する有望な方法である。
既存の方法は、低ビット量子化のために、精度と効率の両方を同時に維持することはできない。
拡散モデルのための新しい量子化フレームワークであるDilateQuantを提案する。
論文 参考訳(メタデータ) (2024-09-22T04:21:29Z) - Timestep-Aware Correction for Quantized Diffusion Models [28.265582848911574]
本稿では,量子化誤差を動的に補正する量子化拡散モデルの時間ステップ対応補正法を提案する。
提案手法を低精度拡散モデルに応用することにより,出力品質の大幅な向上が期待できる。
論文 参考訳(メタデータ) (2024-07-04T13:22:31Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。