論文の概要: Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents
- arxiv url: http://arxiv.org/abs/2402.03678v3
- Date: Wed, 3 Apr 2024 00:45:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 22:08:00.199682
- Title: Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents
- Title(参考訳): 強化学習エージェントのための論理仕様誘導動的タスクサンプリング
- Authors: Yash Shukla, Tanushree Burman, Abhishek Kulkarni, Robert Wright, Alvaro Velasquez, Jivko Sinapov,
- Abstract要約: 強化学習(Reinforcement Learning、RL)は、人工エージェントが多様な振る舞いを学習できるようにするために大きな進歩を遂げてきた。
論理仕様誘導動的タスクサンプリング(LSTS)と呼ばれる新しい手法を提案する。
LSTSは、エージェントを初期状態から目標状態へ誘導するRLポリシーのセットを、ハイレベルなタスク仕様に基づいて学習する。
- 参考スコア(独自算出の注目度): 9.529492371336286
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors. However, learning an effective policy often requires a large number of environment interactions. To mitigate sample complexity issues, recent approaches have used high-level task specifications, such as Linear Temporal Logic (LTL$_f$) formulas or Reward Machines (RM), to guide the learning progress of the agent. In this work, we propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS), that learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification, while minimizing the number of environmental interactions. Unlike previous work, LSTS does not assume information about the environment dynamics or the Reward Machine, and dynamically samples promising tasks that lead to successful goal policies. We evaluate LSTS on a gridworld and show that it achieves improved time-to-threshold performance on complex sequential decision-making problems compared to state-of-the-art RM and Automaton-guided RL baselines, such as Q-Learning for Reward Machines and Compositional RL from logical Specifications (DIRL). Moreover, we demonstrate that our method outperforms RM and Automaton-guided RL baselines in terms of sample-efficiency, both in a partially observable robotic task and in a continuous control robotic manipulation task.
- Abstract(参考訳): 強化学習(Reinforcement Learning、RL)は、人工エージェントが多様な振る舞いを学習できるようにするために大きな進歩を遂げてきた。
しかし、効果的な政策を学ぶには、しばしば多くの環境相互作用を必要とする。
サンプル複雑性の問題を緩和するために、近年のアプローチでは、LTL$_f$(Linear Temporal Logic)式やReward Machines(RM)のような高レベルのタスク仕様を使用してエージェントの学習進捗をガイドしている。
本研究では, エージェントを初期状態から目標状態へ誘導するRLポリシーを学習し, 高レベルタスク仕様に基づく目標状態へ誘導し, 環境相互作用の最小化を図る, 論理仕様誘導動的タスクサンプリング(LSTS)と呼ばれる新しい手法を提案する。
以前の作業とは異なり、LSTSは環境ダイナミクスやReward Machineに関する情報を前提とせず、目標ポリシの成功につながる有望なタスクを動的にサンプリングします。
我々は,LSTSをグリッドワールド上で評価し,最先端のRMやオートマトン誘導RLベースライン(Q-Learning for Reward Machines)や論理仕様(DIRL)など)と比較して,複雑なシーケンシャルな意思決定問題に対する時間対閾値性能の向上を実現することを示す。
さらに,本手法は,部分的に観察可能なロボットタスクと連続制御ロボット操作タスクの両方において,RMおよびオートマトン誘導RLベースラインよりも優れていることを示す。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation [12.243491328213217]
強化学習(Reinforcement Learning, RL)に基づく手法は, ロボット学習においてますます研究されている。
本稿では,エージェントの性能向上のために3段階決定層を利用する時間論理誘導型ハイブリッドポリシーフレームワーク(HyTL)を提案する。
我々は,HyTLを4つの困難な操作タスクで評価し,その有効性と解釈可能性を示した。
論文 参考訳(メタデータ) (2024-12-29T03:34:53Z) - Adaptive Reward Design for Reinforcement Learning in Complex Robotic Tasks [2.3031174164121127]
本稿では,RLエージェントにインセンティブを与える報酬関数群を提案する。
学習過程における報酬関数を動的に更新する適応型報酬生成手法を開発した。
様々なRLに基づくロボットタスクの実験結果から,提案手法が様々なRLアルゴリズムと互換性があることが示されている。
論文 参考訳(メタデータ) (2024-12-14T18:04:18Z) - Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
本稿では,不確実な力学を持つシステムに対する最適制御ポリシーの学習問題に対処する。
本稿では,競争的アプローチよりもはるかに高速に制御ポリシーを学習できる高速化されたRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-16T00:53:41Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
未知の構造を持つ環境で動作している未知のダイナミクスを持つロボットについて考察する。
我々の目標は、オートマトン符号化されたタスクを満足する確率を最大化する制御ポリシーを合成することである。
そこで本研究では,制御ポリシーを類似手法と比較して顕著に高速に学習できるDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
我々は,タスクと現在の知識を考慮に入れながら,探索を計画できる手法を開発した。
本手法は, 探索基準値よりも2倍少ないサンプルで, 強いポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-06T20:28:55Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Meta-Reinforcement Learning in Broad and Non-Parametric Environments [8.091658684517103]
非パラメトリック環境におけるタスクに対するタスク推論に基づくメタRLアルゴリズムTIGRを導入する。
我々は,タスク推論学習から政策訓練を分離し,教師なしの再構築目標に基づいて推論機構を効率的に訓練する。
半チーター環境に基づく定性的に異なるタスクのベンチマークを行い、最先端のメタRL手法と比較してTIGRの優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-08T19:32:44Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
課題の難易度について,環境にとらわれない,アルゴリズムにとらわれない2つの定量的指標を提案する。
これらの指標は、様々な代替案よりも、正規化タスク可解性スコアとの相関が高いことを示す。
これらのメトリクスは、鍵設計パラメータの高速かつ計算効率の良い最適化にも使用できる。
論文 参考訳(メタデータ) (2021-03-23T17:49:50Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
本稿では,タスクがサブタスクグラフによって特徴づけられるような,新しい数発のRL問題を提案し,対処する。
メタ政治を直接学習する代わりに、Subtask Graph Inferenceを使ったメタラーナーを開発した。
実験の結果,2つのグリッドワールド領域とStarCraft II環境において,提案手法が潜在タスクパラメータを正確に推定できることが確認された。
論文 参考訳(メタデータ) (2020-01-01T17:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。