Charge correlator expansion for free fermion negativity
- URL: http://arxiv.org/abs/2402.03725v1
- Date: Tue, 6 Feb 2024 05:44:36 GMT
- Title: Charge correlator expansion for free fermion negativity
- Authors: Yang-Yang Tang
- Abstract summary: In this paper, we demonstrate that in free-fermion systems with conserved charge, R'enyi and logarithmic negativity can be expanded by connected charge correlators.
We find that the replica trick that get logarithmic negativity from the limit of R'enyi negativity is valid in this method only for translational invariant systems.
- Score: 0.40792653193642503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Logarithmic negativity is a widely used entanglement measure in quantum
information theories, which can also be efficiently computed in quantum
many-body systems by replica trick or by relating to correlation matrices. In
this paper, we demonstrate that in free-fermion systems with conserved charge,
R\'enyi and logarithmic negativity can be expanded by connected charge
correlators, analogous to the case for entanglement entropy in the context of
full counting statistics (FCS). We confirm the rapid convergence of this
expansion in random all-connected Hamiltonian through numerical verification,
especially for systems with only local hopping. We find that the replica trick
that get logarithmic negativity from the limit of R\'enyi negativity is valid
in this method only for translational invariant systems. Using this expansion,
we analyze the scaling behavior of negativity in extensive free-fermion
systems. In particular, in 1+1 dimensional free-fermion systems, we observe
that the scaling behavior of negativity from our expansion is consistent with
known results from the method with Toeplitz matrix. These findings provide
insights into the entanglement properties of free-fermion systems, and
demonstrate the efficacy of the expansion approach in studying entanglement
measures.
Related papers
- Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Dynamics of charge-imbalance-resolved entanglement negativity after a
quench in a free-fermion model [0.0]
We study the time evolution of charge-imbalance-resolved negativity after a global quench.
We derive and conjecture a formula for the dynamics of the charged R'enyi logarithmic negativities.
arXiv Detail & Related papers (2022-02-10T20:25:24Z) - Quench dynamics of R\'enyi negativities and the quasiparticle picture [0.0]
We study the time evolution after a quantum quench of the moments of the partial transpose.
We show that, in the space-time scaling limit of long times and large subsystems, a quasiparticle description allows for a complete understanding of the R'enyi negativities.
arXiv Detail & Related papers (2021-10-27T17:07:25Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.