Quench dynamics of R\'enyi negativities and the quasiparticle picture
- URL: http://arxiv.org/abs/2110.14589v1
- Date: Wed, 27 Oct 2021 17:07:25 GMT
- Title: Quench dynamics of R\'enyi negativities and the quasiparticle picture
- Authors: Sara Murciano, Vincenzo Alba, and Pasquale Calabrese
- Abstract summary: We study the time evolution after a quantum quench of the moments of the partial transpose.
We show that, in the space-time scaling limit of long times and large subsystems, a quasiparticle description allows for a complete understanding of the R'enyi negativities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of the moments of the partially transposed density matrix provides
a new and effective way of detecting bipartite entanglement in a many-body
mixed state. This is valuable for cold-atom and ion-trap experiments, as well
as in the general context of quantum simulation of many-body systems. In this
work we study the time evolution after a quantum quench of the moments of the
partial transpose, and several related quantities, such as the R\'enyi
negativities. By combining Conformal Field Theory (CFT) results with
integrability, we show that, in the space-time scaling limit of long times and
large subsystems, a quasiparticle description allows for a complete
understanding of the R\'enyi negativities. We test our analytical predictions
against exact numerical results for free-fermion and free-boson lattice models,
even though our framework applies to generic interacting integrable systems.
Related papers
- Multifractality in monitored single-particle dynamics [0.0]
We study multifractal properties in time evolution of a single particle subject to repeated measurements.
In both cases, multifractal behaviors appear in the ensemble of wave functions or probability distributions conditioned on measurement outcomes.
arXiv Detail & Related papers (2024-06-04T15:01:13Z) - Quantum Fragmentation in the Extended Quantum Breakdown Model [0.0]
We analytically show that, in the absence of any magnetic field for the spins, the model exhibits Hilbert space fragmentation into exponentially many Krylov subspaces.
We also study the long-time behavior of the entanglement entropy and its deviation from the expected Page value as a probe of ergodicity in the system.
arXiv Detail & Related papers (2024-01-29T19:00:10Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Multifractality in the interacting disordered Tavis-Cummings model [0.0]
We analyze the spectral and transport properties of the interacting disordered Tavis-Cummings model at half excitation filling.
We find that the bipartite entanglement entropy grows logarithmically with time.
We show that these effects are due to the combination of finite interactions and integrability of the model.
arXiv Detail & Related papers (2023-02-28T16:31:12Z) - Universal spectral correlations in interacting chaotic few-body quantum
systems [0.0]
We study correlations in terms of the spectral form factor and its moments in interacting chaotic few- and many-body systems.
We find a universal transition from the non-interacting to the strongly interacting case, which can be described as a simple combination of these two limits.
arXiv Detail & Related papers (2023-02-20T12:49:59Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Dynamics of charge-imbalance-resolved entanglement negativity after a
quench in a free-fermion model [0.0]
We study the time evolution of charge-imbalance-resolved negativity after a global quench.
We derive and conjecture a formula for the dynamics of the charged R'enyi logarithmic negativities.
arXiv Detail & Related papers (2022-02-10T20:25:24Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.