Theory of parametric resonance for discrete time crystals in fully-connected spin-cavity systems
- URL: http://arxiv.org/abs/2402.03729v2
- Date: Wed, 17 Apr 2024 14:36:36 GMT
- Title: Theory of parametric resonance for discrete time crystals in fully-connected spin-cavity systems
- Authors: Roy D. Jara Jr., Dennis F. Salinel, Jayson G. Cosme,
- Abstract summary: We pinpoint the conditions necessary for discrete time crystal formation in fully connected spin-cavity systems.
We elucidate the role of nonlinearity and dissipation by mapping the periodically driven open Dicke model onto effective linear and nonlinear oscillator models.
We analyze the effect of global symmetry breaking using the Lipkin-Meshkov-Glick model with tunable anisotropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We pinpoint the conditions necessary for discrete time crystal (DTC) formation in fully connected spin-cavity systems from the perspective of parametric resonance by mapping these systems onto oscillator like models. We elucidate the role of nonlinearity and dissipation by mapping the periodically driven open Dicke model onto effective linear and nonlinear oscillator models, while we analyze the effect of global symmetry breaking using the Lipkin-Meshkov-Glick model with tunable anisotropy. We show that the system's nonlinearity restrains the dynamics from becoming unbounded when driven resonantly. On the other hand, dissipation keeps the oscillation amplitude of the period-doubling instability fixed, which is a key feature of DTCs. The presence of global symmetry breaking in the absence of driving is found to be crucial in the parametric resonant activation of period-doubling response. We provide analytic predictions for the resonant frequencies and amplitudes leading to DTC formation for both systems using their respective oscillator models.
Related papers
- Dynamical phases of a BEC in a bad optical cavity at optomechanical resonance [0.0]
We study the emergence of dynamical phases of a Bose-Einstein condensate that is optomechanically coupled to a dissipative cavity mode.
We derive an effective model for the atomic motion, where the cavity degrees of freedom are eliminated.
We show that such limit cycle solutions are metastable configurations of the adiabatic model.
arXiv Detail & Related papers (2024-08-05T14:01:13Z) - Driven generalized quantum Rayleigh-van der Pol oscillators: Phase
localization and spectral response [0.0]
This work considers the classically driven generalized quantum Rayleigh-van der Pol oscillator.
Two non-linear terms break the rotational phase space symmetry, Wigner distribution of quantum mechanical limit cycle state is not rotationally symmetric.
Phase localization and frequency entrainment, which are required for synchronization, are discussed in detail.
Several observables are found to exhibit the analog of the celebrated classical Arnold tongue.
arXiv Detail & Related papers (2024-01-08T11:19:51Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Ancilla assisted Discrete Time Crystals in Non-interacting Spin Systems [0.0]
We show the emergence of discrete time translation symmetry breaking in non-interacting systems.
These time-periodic structures become stable against perturbations only in the presence of their interaction with the ancillary quantum system.
arXiv Detail & Related papers (2021-07-25T07:41:24Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - Parametric oscillations in a dissipative bosonic Josephson junction [0.0]
We study the dynamics of a nonlinear dissipative bosonic Josephson junction (BJJ) with a time-dependent sinusoidal perturbation in interaction term.
We demonstrate parametric resonance where the system undergoes sustained periodic oscillations even in the presence of dissipation.
arXiv Detail & Related papers (2020-01-14T14:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.