論文の概要: Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables
- arxiv url: http://arxiv.org/abs/2402.03753v1
- Date: Tue, 6 Feb 2024 06:42:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 16:05:45.224023
- Title: Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables
- Title(参考訳): 不確実性に基づく集団変数を用いたロバストな分子データセットのサンプリング
- Authors: Aik Rui Tan, Johannes C. B. Dietschreit, Rafael Gomez-Bombarelli
- Abstract要約: 化学関連データポイントの取得を導くために,不確実性を集合変数(CV)として活用する手法を提案する。
このアプローチでは、1つのモデルからのガウス混合モデルに基づく不確実性測定を、偏りのある分子動力学シミュレーションのためのCVとして採用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating a data set that is representative of the accessible configuration
space of a molecular system is crucial for the robustness of machine learned
interatomic potentials (MLIP). However, the complexity of molecular systems,
characterized by intricate potential energy surfaces (PESs) with numerous local
minima and energy barriers, presents a significant challenge. Traditional
methods of data generation, such as random sampling or exhaustive exploration,
are either intractable or may not capture rare, but highly informative
configurations. In this study, we propose a method that leverages uncertainty
as the collective variable (CV) to guide the acquisition of chemically-relevant
data points, focusing on regions of the configuration space where ML model
predictions are most uncertain. This approach employs a Gaussian Mixture
Model-based uncertainty metric from a single model as the CV for biased
molecular dynamics simulations. The effectiveness of our approach in overcoming
energy barriers and exploring unseen energy minima, thereby enhancing the data
set in an active learning framework, is demonstrated on the alanine dipeptide
benchmark system.
- Abstract(参考訳): 分子システムのアクセス可能な構成空間を表すデータセットを生成することは、機械学習原子間ポテンシャル(mlip)のロバスト性にとって重要である。
しかし、多くの局所的なミニマとエネルギー障壁を持つ複雑なポテンシャルエネルギー表面(PES)を特徴とする分子系の複雑さは、大きな課題を呈している。
ランダムサンプリングや徹底的な探索のような従来のデータ生成方法は、扱いにくいか、稀だが非常に有益な構成を捉えない。
本研究では,MLモデル予測が最も不確実な構成空間の領域に着目し,化学関連データポイントの獲得を導くために,不確実性を集合変数(CV)として活用する手法を提案する。
このアプローチでは、偏り分子動力学シミュレーションのためのcvとして単一のモデルからガウス混合モデルに基づく不確かさ計量を用いる。
アラニンジペプチドベンチマークシステムにおいて, エネルギー障壁を克服し, 目に見えないエネルギーミニマを探索し, アクティブラーニングフレームワークで設定したデータセットを向上する手法の有効性を実証した。
関連論文リスト
- Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - On the Interplay of Subset Selection and Informed Graph Neural Networks [3.091456764812509]
この研究は、QM9データセットにおける分子の原子化エネルギーの予測に焦点を当てている。
トレーニングセット選択過程における分子多様性の最大化は,線形回帰法および非線形回帰法のロバスト性を高めることを示す。
また、モデルに依存しない説明器を用いて、グラフニューラルネットワークによる予測の信頼性を確認する。
論文 参考訳(メタデータ) (2023-06-15T09:09:27Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
物理科学では、限られた訓練データは将来の観測データを適切に特徴づけることができない。
特に外挿を依頼される場合、モデルが不確実性を適切に示すことは重要である。
火星探査機キュリオシティに搭載されたChemCam装置のレーザ誘起分解分光データに関する方法論を実証した。
論文 参考訳(メタデータ) (2022-12-14T23:57:46Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Learning inducing points and uncertainty on molecular data by scalable
variational Gaussian processes [0.0]
分子記述子空間における誘導点の変動学習は、2つの分子動力学データセット上でのエネルギーと原子力の予測を改善することを示す。
本研究は大規模分子結晶系に拡張し, データセットのスパース表現を効率よく学習することにより, 原子間力の予測に優れた変動GPモデルを示す。
論文 参考訳(メタデータ) (2022-07-16T10:41:41Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A2I Transformer: Permutation-equivariant attention network for pairwise
and many-body interactions with minimal featurization [0.1469945565246172]
本研究では,粒子の座標から原子間エネルギーを直接予測するエンド・ツー・エンドモデルを提案する。
我々は,周期境界条件 (PBC) や$n$-body相互作用,バイナリ合成など,分子シミュレーション問題におけるいくつかの課題に対して実験を行った。
論文 参考訳(メタデータ) (2021-10-27T12:18:25Z) - Federated Learning of Molecular Properties in a Heterogeneous Setting [79.00211946597845]
これらの課題に対処するために、フェデレーションヘテロジニアス分子学習を導入する。
フェデレートラーニングにより、エンドユーザは、独立したクライアント上に分散されたトレーニングデータを保存しながら、グローバルモデルを協調的に構築できる。
FedChemは、化学におけるAI改善のための新しいタイプのコラボレーションを可能にする必要がある。
論文 参考訳(メタデータ) (2021-09-15T12:49:13Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
基礎となる物理を一貫して組み込む新しい学習フレームワークを提案する。
原子間力場の形で利用可能な物理学を完全に組み込んだ逆クルバック・リーブラー分岐に基づく新しい目的を提案する。
本研究は,バイモーダルポテンシャルエネルギー関数とアラニンジペプチドに対するCVの予測能力および物理的意義の観点からアルゴリズムの進歩を実証する。
論文 参考訳(メタデータ) (2020-02-24T10:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。