Efficient Model Compression for Hierarchical Federated Learning
- URL: http://arxiv.org/abs/2405.17522v1
- Date: Mon, 27 May 2024 12:17:47 GMT
- Title: Efficient Model Compression for Hierarchical Federated Learning
- Authors: Xi Zhu, Songcan Yu, Junbo Wang, Qinglin Yang,
- Abstract summary: Federated learning (FL) has garnered significant attention due to its capacity to preserve privacy within distributed learning systems.
This paper introduces a novel hierarchical FL framework that integrates the benefits of clustered FL and model compression.
- Score: 10.37403547348343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL), as an emerging collaborative learning paradigm, has garnered significant attention due to its capacity to preserve privacy within distributed learning systems. In these systems, clients collaboratively train a unified neural network model using their local datasets and share model parameters rather than raw data, enhancing privacy. Predominantly, FL systems are designed for mobile and edge computing environments where training typically occurs over wireless networks. Consequently, as model sizes increase, the conventional FL frameworks increasingly consume substantial communication resources. To address this challenge and improve communication efficiency, this paper introduces a novel hierarchical FL framework that integrates the benefits of clustered FL and model compression. We present an adaptive clustering algorithm that identifies a core client and dynamically organizes clients into clusters. Furthermore, to enhance transmission efficiency, each core client implements a local aggregation with compression (LC aggregation) algorithm after collecting compressed models from other clients within the same cluster. Simulation results affirm that our proposed algorithms not only maintain comparable predictive accuracy but also significantly reduce energy consumption relative to existing FL mechanisms.
Related papers
- Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
Federated Learning (FL) is the most widely adopted collaborative learning approach for training decentralized Machine Learning (ML) models.
However, since great data similarity or homogeneity is taken for granted in all FL tasks, FL is still not specifically designed for the industrial setting.
We propose a Lightweight Industrial Cohorted FL (LICFL) algorithm that uses model parameters for cohorting without any additional on-edge (clientlevel) computations and communications.
arXiv Detail & Related papers (2024-07-25T12:48:56Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds.
We show strong evidences that variable-length is beneficial for compression in FL.
We present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response to the dynamics of model updates.
arXiv Detail & Related papers (2024-02-06T07:25:21Z) - Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices.
FL is hindered by excessive communication costs due to repeated server-client communication during training.
We propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation.
arXiv Detail & Related papers (2024-01-25T14:49:15Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - HiFlash: Communication-Efficient Hierarchical Federated Learning with
Adaptive Staleness Control and Heterogeneity-aware Client-Edge Association [38.99309610943313]
Federated learning (FL) is a promising paradigm that enables collaboratively learning a shared model across massive clients.
For many existing FL systems, clients need to frequently exchange model parameters of large data size with the remote cloud server directly via wide-area networks (WAN)
We resort to the hierarchical federated learning paradigm of HiFL, which reaps the benefits of mobile edge computing.
arXiv Detail & Related papers (2023-01-16T14:39:04Z) - Comfetch: Federated Learning of Large Networks on Constrained Clients
via Sketching [28.990067638230254]
Federated learning (FL) is a popular paradigm for private and collaborative model training on the edge.
We propose a novel algorithm, Comdirectional, which allows clients to train large networks using representations of the global neural network.
arXiv Detail & Related papers (2021-09-17T04:48:42Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.