論文の概要: Return-Aligned Decision Transformer
- arxiv url: http://arxiv.org/abs/2402.03923v4
- Date: Tue, 28 May 2024 03:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:38:36.624327
- Title: Return-Aligned Decision Transformer
- Title(参考訳): 帰還アライメント決定変換器
- Authors: Tsunehiko Tanaka, Kenshi Abe, Kaito Ariu, Tetsuro Morimura, Edgar Simo-Serra,
- Abstract要約: 本稿では、実際のリターンを目標リターンに合わせるために、Return-Aligned Decision Transformer (RADT)を提案する。
RADTはリターンのみに注意を払って抽出した機能を使用しており、アクション生成はターゲットリターンに一貫して依存する。
- 参考スコア(独自算出の注目度): 13.973995766656332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional approaches in offline reinforcement learning aim to learn the optimal policy that maximizes the cumulative reward, also known as return. However, as applications broaden, it becomes increasingly crucial to train agents that not only maximize the returns, but align the actual return with a specified target return, giving control over the agent's performance. Decision Transformer (DT) optimizes a policy that generates actions conditioned on the target return through supervised learning and is equipped with a mechanism to control the agent using the target return. However, the action generation is hardly influenced by the target return because DT's self-attention allocates scarce attention scores to the return tokens. In this paper, we propose Return-Aligned Decision Transformer (RADT), designed to effectively align the actual return with the target return. RADT utilizes features extracted by paying attention solely to the return, enabling the action generation to consistently depend on the target return. Extensive experiments show that RADT reduces the discrepancies between the actual return and the target return of DT-based methods.
- Abstract(参考訳): オフライン強化学習における従来のアプローチは、リターンとして知られる累積報酬を最大化する最適なポリシーを学ぶことを目的としている。
しかし、アプリケーションが広まるにつれて、リターンを最大化するだけでなく、実際のリターンを特定のターゲットリターンと整合させるエージェントを訓練することがますます重要になり、エージェントのパフォーマンスを制御できるようになる。
決定変換器(DT)は、教師付き学習を通じて目標リターンに条件付けられたアクションを生成するポリシーを最適化し、目標リターンを使用してエージェントを制御する機構を備える。
しかし、DTの自己注意が低い注意点を返却トークンに割り当てているため、アクション生成はターゲットリターンの影響を受けにくい。
本稿では、実際のリターンと目標リターンを効果的に整合させるために、Return-Aligned Decision Transformer (RADT)を提案する。
RADTはリターンのみに注意を払って抽出した特徴を利用するため、アクション生成は目標リターンに一貫して依存することができる。
大規模実験により、RADTはDTベースの手法の実際の戻り値と目標戻り値との差を減少させることが示された。
関連論文リスト
- In-Dataset Trajectory Return Regularization for Offline Preference-based Reinforcement Learning [15.369324784520538]
In-Dataset Trajectory Return Regularization (DTR) を提案する。
DTRは報酬バイアスの下で不正確な軌道縫合を学習するリスクを軽減する。
また,複数の報酬モデルを効果的に統合するアンサンブル正規化手法を導入する。
論文 参考訳(メタデータ) (2024-12-12T09:35:47Z) - Return Augmented Decision Transformer for Off-Dynamics Reinforcement Learning [26.915055027485465]
限られたデータを持つ対象領域におけるポリシー学習を強化するために,オフラインオフダイナミックス強化学習(RL)について検討する。
我々のアプローチは、リターン条件付き教師あり学習(RCSL)、特に決定変換器(DT)に焦点を当てている。
本研究では、ソース領域のリターンをターゲット領域のリターンと整列させて拡張するリターンAugmented Decision Transformer (RADT) 法を提案する。
論文 参考訳(メタデータ) (2024-10-30T20:46:26Z) - Q-value Regularized Decision ConvFormer for Offline Reinforcement Learning [5.398202201395825]
Decision Transformer (DT) はオフライン強化学習において例外的な能力を示した。
Decision ConvFormer (DC) はマルコフ決定プロセス内のRL軌道のモデル化の文脈で理解しやすい。
本稿では,Q-value Regularized Decision ConvFormer(QDC)を提案する。
論文 参考訳(メタデータ) (2024-09-12T14:10:22Z) - Adversarially Robust Decision Transformer [17.49328076347261]
本稿では,最悪のケース対応RvSアルゴリズムであるAdversarially Robust Decision Transformer(ARDT)を提案する。
ARDTは、in-sample minimax return-to-goのポリシーを学び、条件を立てる。
大規模シーケンシャルゲームや連続的対向RL環境では、ARDTは強力なテストタイムの対戦相手に対して非常に優れたロバスト性を示す。
論文 参考訳(メタデータ) (2024-07-25T22:12:47Z) - Q-value Regularized Transformer for Offline Reinforcement Learning [70.13643741130899]
オフライン強化学習(RL)における最先端化のためのQ値正規化変換器(QT)を提案する。
QTはアクション値関数を学習し、条件付きシーケンスモデリング(CSM)のトレーニング損失にアクション値を最大化する用語を統合する
D4RLベンチマークデータセットの実証評価は、従来のDP法やCSM法よりもQTの方が優れていることを示す。
論文 参考訳(メタデータ) (2024-05-27T12:12:39Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数と人間の嗜好の相違は、現実世界で破滅的な結果をもたらす可能性がある。
近年の手法は、人間の嗜好から報酬関数を学習することで、不適応を緩和することを目的としている。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - Critic-Guided Decision Transformer for Offline Reinforcement Learning [28.211835303617118]
CGDT(Critical-Guided Decision Transformer)
決定変換器の軌道モデリング機能を備えた値ベース手法からの長期的な戻り値の予測可能性を利用する。
これらの知見に基づいて,提案手法は,値に基づく手法からの長期的なリターンの予測可能性と,決定変換器の軌道モデリング能力を組み合わせた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-21T10:29:17Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
決定変換器(Decision Transformer, DT)は、強化学習(RL)における変換器アーキテクチャの最近の進歩を活用する革新的なアルゴリズムである。
本稿では,階層RLのレンズを用いたシーケンシャル意思決定のための汎用シーケンスモデリングフレームワークを提案する。
DTは、高レベルかつ低レベルなポリシーを選択することで、このフレームワークの特別なケースとして現れ、これらの選択の潜在的な失敗について議論する。
論文 参考訳(メタデータ) (2023-11-01T03:32:13Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
オフライン強化学習(RL)は、学習ポリシーとデータセットの分散シフトによって問題となる。
本稿では,データセットの再サンプリングが分散サポートを一定に保っているという観察に基づいて,オフラインRLアルゴリズムをシンプルかつ効果的に向上させる手法を提案する。
ReD(Return-based Data Re Balance)メソッドをダブします。これは10行未満のコード変更で実装でき、無視できる実行時間を追加します。
論文 参考訳(メタデータ) (2022-10-17T16:34:01Z) - Offline Reinforcement Learning with Implicit Q-Learning [85.62618088890787]
現行のオフライン強化学習手法では、トレーニング中に見つからない行動の価値を問い合わせて、ポリシーを改善する必要がある。
本稿では,データセット外の動作を評価する必要のないオフラインRL手法を提案する。
この方法により、学習したポリシーは、一般化によってデータの最良の振る舞いを大幅に改善することができる。
論文 参考訳(メタデータ) (2021-10-12T17:05:05Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。