論文の概要: iEBAKER: Improved Remote Sensing Image-Text Retrieval Framework via Eliminate Before Align and Keyword Explicit Reasoning
- arxiv url: http://arxiv.org/abs/2504.05644v1
- Date: Tue, 08 Apr 2025 03:40:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:29:56.501033
- Title: iEBAKER: Improved Remote Sensing Image-Text Retrieval Framework via Eliminate Before Align and Keyword Explicit Reasoning
- Title(参考訳): iEBAKER:アライメント前とキーワード明示的推論によるリモートセンシング画像検索フレームワークの改善
- Authors: Yan Zhang, Zhong Ji, Changxu Meng, Yanwei Pang, Jungong Han,
- Abstract要約: iEBAKERは、弱い相関のサンプルペアをフィルタリングする革新的な戦略である。
SAR(Sort After Reversed Retrieval)戦略の代替として,SAR(Sort After Retrieval)戦略を導入する。
キーワード明示型推論(KER)モジュールを組み込んで、微妙なキー概念の区別による有益な影響を促進する。
- 参考スコア(独自算出の注目度): 80.44805667907612
- License:
- Abstract: Recent studies focus on the Remote Sensing Image-Text Retrieval (RSITR), which aims at searching for the corresponding targets based on the given query. Among these efforts, the application of Foundation Models (FMs), such as CLIP, to the domain of remote sensing has yielded encouraging outcomes. However, existing FM based methodologies neglect the negative impact of weakly correlated sample pairs and fail to account for the key distinctions among remote sensing texts, leading to biased and superficial exploration of sample pairs. To address these challenges, we propose an approach named iEBAKER (an Improved Eliminate Before Align strategy with Keyword Explicit Reasoning framework) for RSITR. Specifically, we propose an innovative Eliminate Before Align (EBA) strategy to filter out the weakly correlated sample pairs, thereby mitigating their deviations from optimal embedding space during alignment.Further, two specific schemes are introduced from the perspective of whether local similarity and global similarity affect each other. On this basis, we introduce an alternative Sort After Reversed Retrieval (SAR) strategy, aims at optimizing the similarity matrix via reverse retrieval. Additionally, we incorporate a Keyword Explicit Reasoning (KER) module to facilitate the beneficial impact of subtle key concept distinctions. Without bells and whistles, our approach enables a direct transition from FM to RSITR task, eliminating the need for additional pretraining on remote sensing data. Extensive experiments conducted on three popular benchmark datasets demonstrate that our proposed iEBAKER method surpasses the state-of-the-art models while requiring less training data. Our source code will be released at https://github.com/zhangy0822/iEBAKER.
- Abstract(参考訳): 最近の研究は、与えられたクエリに基づいて対応するターゲットを検索することを目的としたRSITR(Remote Sensing Image-Text Retrieval)に焦点を当てている。
これらの取り組みの中で、CLIPのようなファンデーションモデル(FM)のリモートセンシング分野への応用は、奨励的な結果をもたらしている。
しかし、既存のFMベースの手法は、弱い相関したサンプルペアの負の影響を無視し、リモートセンシングテキスト間の重要な違いを説明できないため、サンプルペアの偏りと表面的な探索に繋がる。
これらの課題に対処するため,RSITR に対して iEBAKER (Keyword Explicit Reasoning framework を用いた改良された排除前戦略) というアプローチを提案する。
具体的には、弱相関サンプル対をフィルタリングし、アライメント中に最適な埋め込み空間から逸脱を緩和するEBA(Electminate Before Align)戦略を提案する。
そこで本研究では,逆検索による類似度行列の最適化を目的とした,SAR(Sort After Reversed Retrieval)戦略を提案する。
さらに,キーワードExplicit Reasoning (KER) モジュールを組み込んで,微妙なキー概念の区別による有益な影響を促進する。
ベルやホイッスルがなければ,FMからRSITRタスクへの直接移行が可能となり,リモートセンシングデータに事前トレーニングを加える必要がなくなる。
3つの一般的なベンチマークデータセットで実施された大規模な実験により、提案したiEBAKER法が、より少ないトレーニングデータを必要としながら、最先端のモデルを上回ることを示した。
ソースコードはhttps://github.com/zhangy0822/iEBAKER.comで公開されます。
関連論文リスト
- Unsupervised Domain Adaptive Person Search via Dual Self-Calibration [12.158126976694488]
Unsupervised Domain Adaptive (UDA) パーソンサーチは、ラベル付きソースドメインデータセットでトレーニングされたモデルを、追加のアノテーションなしでターゲットドメインデータセットに採用することに焦点を当てている。
最も効果的なUDA人物探索法は、典型的には、ソースドメインとクラスタリングから派生した擬似ラベルの基底真理を利用する。
ノイズの多い擬似ラベルの干渉を効果的に除去するUDA人物探索のためのDSCA(Dual Self-Calibration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-21T06:54:00Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement [53.044703127757295]
教師なし学習 可視赤外人物再識別 (USL-VI-ReID) は、ラベルなしのクロスモダリティデータセットからモダリティ不変の特徴を学習することを目的としている。
本稿では,生成したラベルを1つのモダリティからそれに対応するモダリティに同時に割り当てる,Dual Optimal Transport Label Assignment (DOTLA) フレームワークを提案する。
提案したDOTLA機構は、相互強化と相互モダリティデータアソシエーションの効率的な解を定式化することにより、不十分でノイズの多いラベルアソシエーションの副作用を効果的に低減することができる。
論文 参考訳(メタデータ) (2023-05-22T04:40:30Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
関係抽出は低リソースのシナリオやドメインでは特に困難である。
近年の文献は自己教師型学習によって低リソースREに取り組みつつある。
コントラスト学習の一貫した目的を用いたREモデルの事前学習と微調整を提案する。
論文 参考訳(メタデータ) (2022-12-21T07:30:22Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
本稿では,ノイズの多い擬似ラベルを限定することで,より優れた一般化能力を持つ特徴表現を学習する手法を提案する。
我々は,古典的な相互学習アーキテクチャの下で,FDL(Feature Diversity Learning)と呼ばれる新しい手法を提案する。
実験の結果,提案するFDL-SDは,複数のベンチマークデータセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-01-25T10:10:48Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
非重複カメラにおける人物再識別(ReID)は難しい課題である。
Unsupervised Domain Adaptation(UDA)は、ソースで訓練されたモデルから、IDラベルアノテーションなしでターゲットドメインへの機能学習適応を実行するため、有望な代替手段です。
本稿では,新しいオフライン戦略によって生成されたサンプルのトリプレットを利用する,UDAベースのReID手法を提案する。
論文 参考訳(メタデータ) (2021-03-21T23:58:39Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。