論文の概要: LIPSTICK: Corruptibility-Aware and Explainable Graph Neural Network-based Oracle-Less Attack on Logic Locking
- arxiv url: http://arxiv.org/abs/2402.04235v1
- Date: Tue, 6 Feb 2024 18:42:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:38:15.367521
- Title: LIPSTICK: Corruptibility-Aware and Explainable Graph Neural Network-based Oracle-Less Attack on Logic Locking
- Title(参考訳): LIPSTICK: 論理ロックに対する破壊的かつ説明可能なグラフニューラルネットワークベースのOracle-Less攻撃
- Authors: Yeganeh Aghamohammadi, Amin Rezaei,
- Abstract要約: 我々は、論理ロックに対するニューラルネットワークに基づくオラクルレスアタックを開発し、訓練し、テストする。
我々のモデルは、機械学習モデルがトレーニングプロセスで解釈したものと、それがどのように攻撃を成功させるかを分析するという意味で説明がつく。
- 参考スコア(独自算出の注目度): 1.104960878651584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a zero-trust fabless paradigm, designers are increasingly concerned about hardware-based attacks on the semiconductor supply chain. Logic locking is a design-for-trust method that adds extra key-controlled gates in the circuits to prevent hardware intellectual property theft and overproduction. While attackers have traditionally relied on an oracle to attack logic-locked circuits, machine learning attacks have shown the ability to retrieve the secret key even without access to an oracle. In this paper, we first examine the limitations of state-of-the-art machine learning attacks and argue that the use of key hamming distance as the sole model-guiding structural metric is not always useful. Then, we develop, train, and test a corruptibility-aware graph neural network-based oracle-less attack on logic locking that takes into consideration both the structure and the behavior of the circuits. Our model is explainable in the sense that we analyze what the machine learning model has interpreted in the training process and how it can perform a successful attack. Chip designers may find this information beneficial in securing their designs while avoiding incremental fixes.
- Abstract(参考訳): ゼロトラストのファブレスパラダイムでは、デザイナは半導体サプライチェーンに対するハードウェアベースの攻撃をますます懸念している。
論理ロック(Logic locking)は、ハードウェアの知的財産の盗難と過剰生産を防ぐために、回路に追加のキー制御ゲートを追加する、信頼のための設計手法である。
攻撃者は伝統的に論理ロックされた回路を攻撃するために託宣に依存してきたが、機械学習攻撃は託宣にアクセスしなくても秘密鍵を回収する能力を示している。
本稿では、まず最先端の機械学習攻撃の限界について検討し、鍵ハミング距離を唯一のモデル導構造計量として用いることは必ずしも有用ではないと論じる。
そこで我々は,回路の構造と動作を考慮に入れた,論理ロックに対するニューラルネットワークに基づくオラクルレス攻撃を開発し,訓練し,テストする。
我々のモデルは、機械学習モデルがトレーニングプロセスで解釈したものと、それがどのように攻撃を成功させるかを分析するという意味で説明がつく。
チップデザイナは、インクリメンタルな修正を避けながら、設計をセキュアにすることで、この情報を有益なものにすることができる。
関連論文リスト
- Convolutional Differentiable Logic Gate Networks [68.74313756770123]
本稿では,論理ゲートネットワークを微分緩和により直接学習する手法を提案する。
私たちはこのアイデアに基づいて、深い論理ゲートツリーの畳み込みと論理ORプーリングによってそれを拡張します。
CIFAR-10では、6100万の論理ゲートのみを使用して86.29%の精度を実現し、SOTAよりも29倍の精度で改善した。
論文 参考訳(メタデータ) (2024-11-07T14:12:00Z) - DECOR: Enhancing Logic Locking Against Machine Learning-Based Attacks [0.6131022957085439]
論理ロック(LL)は集積回路の有望な知的財産保護対策として注目されている。
機械学習(ML)によって促進された最近の攻撃は、複数のLLスキームで正しいキーを予測する可能性を示している。
本稿では、LL方式におけるロックされた回路網リストと正しい鍵値との相関を著しく低減できるランダム化アルゴリズムに基づく汎用LL拡張手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T07:31:23Z) - Evil from Within: Machine Learning Backdoors through Hardware Trojans [72.99519529521919]
バックドアは、自動運転車のようなセキュリティクリティカルなシステムの整合性を損なう可能性があるため、機械学習に深刻な脅威をもたらす。
私たちは、機械学習のための一般的なハードウェアアクセラレーターに完全に存在するバックドアアタックを導入します。
我々は,Xilinx Vitis AI DPUにハードウェアトロイの木馬を埋め込むことにより,攻撃の実現可能性を示す。
論文 参考訳(メタデータ) (2023-04-17T16:24:48Z) - Exploiting Logic Locking for a Neural Trojan Attack on Machine Learning
Accelerators [4.605674633999923]
論理ロックは、保護するニューラルアクセラレーターのセキュリティを損なうためにどのように使われるかを示す。
具体的には、不正鍵による決定論的誤りが、どのようにしてニューラルトロイジャンスタイルのバックドアを生成するかを示す。
論文 参考訳(メタデータ) (2023-04-12T17:55:34Z) - An integrated Auto Encoder-Block Switching defense approach to prevent
adversarial attacks [0.0]
逆入力サンプルに対する最先端のニューラルネットワークの脆弱性は、劇的に増大している。
本稿では,自動エンコーダとブロックスイッチングアーキテクチャを組み合わせたディフェンスアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-11T10:58:24Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
本稿では,プラットフォームに依存しない論理ゲート定義の必要性から,普遍的なフォールトトレラント論理の枠組みを提案する。
資源オーバーヘッドを改善するユニバーサル論理の新しいスキームについて検討する。
境界のない計算に好適な論理誤差率を動機として,新しい計算手法を提案する。
論文 参考訳(メタデータ) (2021-12-22T19:00:03Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Deceptive Logic Locking for Hardware Integrity Protection against
Machine Learning Attacks [0.6868387710209244]
本稿では,鍵関連構造漏洩に対するロック方式の理論的モデルを提案する。
D-MUX(D-MUX:deceptive multiplexer-based logic-locking scheme)は、機械学習攻撃に対する耐性を持つ。
我々の知る限りでは、D-MUXは、既知のすべての学習ベースの攻撃から保護できる、最初の機械学習-レジリエントなロックスキームである。
論文 参考訳(メタデータ) (2021-07-19T09:08:14Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Challenging the Security of Logic Locking Schemes in the Era of Deep
Learning: A Neuroevolutionary Approach [0.2982610402087727]
ディープラーニングはロジックロックの領域で導入されている。
私たちはSnapShotを紹介します。これは、ニューラルネットワークを利用した最初のタイプのロジックロックに対する新しい攻撃です。
本研究では,SnapShotが選択した攻撃シナリオに対して平均キー予測精度82.60%を達成することを示す。
論文 参考訳(メタデータ) (2020-11-20T13:03:19Z) - EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks [68.01125081367428]
近年の研究では、機械学習アルゴリズムは敵攻撃に弱いことが示されている。
本稿では,脳波をベースとしたBCIの毒殺攻撃に狭周期パルスを用いることを提案する。
論文 参考訳(メタデータ) (2020-10-30T20:49:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。