論文の概要: Risks of AI Scientists: Prioritizing Safeguarding Over Autonomy
- arxiv url: http://arxiv.org/abs/2402.04247v5
- Date: Mon, 21 Jul 2025 18:59:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.717619
- Title: Risks of AI Scientists: Prioritizing Safeguarding Over Autonomy
- Title(参考訳): AI科学者のリスク - 自律性よりも保護を優先すること
- Authors: Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou, Meng Qu, Yilun Zhao, Jian Tang, Zhuosheng Zhang, Arman Cohan, Zhiyong Lu, Mark Gerstein,
- Abstract要約: この視点は、AI科学者の脆弱性を調べ、その誤用に関連する潜在的なリスクに光を当てる。
我々は、ユーザ意図、特定の科学的領域、およびそれらが外部環境に与える影響を考慮に入れている。
本稿では,人間規制,エージェントアライメント,環境フィードバックの理解を含む三段階的枠組みを提案する。
- 参考スコア(独自算出の注目度): 65.77763092833348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI scientists powered by large language models have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines. While their capabilities are promising, these agents also introduce novel vulnerabilities that require careful consideration for safety. However, there has been limited comprehensive exploration of these vulnerabilities. This perspective examines vulnerabilities in AI scientists, shedding light on potential risks associated with their misuse, and emphasizing the need for safety measures. We begin by providing an overview of the potential risks inherent to AI scientists, taking into account user intent, the specific scientific domain, and their potential impact on the external environment. Then, we explore the underlying causes of these vulnerabilities and provide a scoping review of the limited existing works. Based on our analysis, we propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback (agent regulation) to mitigate these identified risks. Furthermore, we highlight the limitations and challenges associated with safeguarding AI scientists and advocate for the development of improved models, robust benchmarks, and comprehensive regulations.
- Abstract(参考訳): 大規模言語モデルを利用したAI科学者は、自律的に実験を行い、さまざまな分野にわたる科学的発見を促進するという、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
しかし、これらの脆弱性の包括的な調査は限られている。
この視点は、AI科学者の脆弱性を調べ、悪用に関連する潜在的なリスクを隠蔽し、安全対策の必要性を強調している。
まず、ユーザー意図、特定の科学的領域、そしてそれらが外部環境に与える影響を考慮して、AI科学者に固有の潜在的なリスクの概要を提供する。
次に、これらの脆弱性の根本原因を調査し、制限された既存の作業のスクーピングレビューを提供する。
そこで本研究では, 人的規制, エージェント・アライメント, 環境フィードバック(エージェント・レギュレーション)の理解を含む三段階的枠組みを提案する。
さらに、AI科学者の保護に関連する制限と課題を強調し、改善されたモデル、堅牢なベンチマーク、包括的な規制の開発を提唱する。
関連論文リスト
- Nuclear Deployed: Analyzing Catastrophic Risks in Decision-making of Autonomous LLM Agents [10.565508277042564]
大規模言語モデル(LLM)は、自律的な意思決定者へと進化し、ハイステークシナリオにおける破滅的なリスクに対する懸念を高めている。
このようなリスクは,エージェントのHelpful,Harmlessness,Hoest(HHH)目標間のトレードオフから生じる可能性があるという知見に基づいて,新しい3段階評価フレームワークを構築した。
14,400個のエージェントシミュレーションを12個の先進LDMで行い、広範囲な実験と分析を行った。
論文 参考訳(メタデータ) (2025-02-17T02:11:17Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
我々は,大規模言語モデル(LLM)の安全性を評価するための総合ベンチマークであるAgent-SafetyBenchを紹介する。
Agent-SafetyBenchは349のインタラクション環境と2,000のテストケースを含み、安全リスクの8つのカテゴリを評価し、安全でないインタラクションで頻繁に発生する10の一般的な障害モードをカバーする。
16 名の LLM エージェントを評価した結果,いずれのエージェントも 60% 以上の安全性スコアを達成できないことがわかった。
論文 参考訳(メタデータ) (2024-12-19T02:35:15Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs [80.45174785447136]
実験室の事故は人命と財産に重大なリスクをもたらす。
安全訓練の進歩にもかかわらず、実験員はいまだに無意識に安全でない慣行に従事している可能性がある。
様々な分野におけるガイダンスのための大きな言語モデル(LLM)に対する懸念が高まっている。
論文 参考訳(メタデータ) (2024-10-18T05:21:05Z) - SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks [36.99233361224705]
大規模言語モデル(LLM)は、生物学、化学、医学、物理学など、様々な分野の科学的なタスクに変化をもたらした。
既存のベンチマークは主にテキストの内容に焦点を当て、分子、タンパク質、ゲノム言語などの重要な科学的表現を見渡す。
SciSafeEvalは, LLMの安全アライメントを, 様々な科学的タスクで評価するためのベンチマークである。
論文 参考訳(メタデータ) (2024-10-02T16:34:48Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
本稿では,リスク行動が実行される前に,潜在的なエラーを積極的に検出する新しい手法であるInferActを紹介する。
InferActは人間のプロキシとして機能し、安全でないアクションを検出し、ユーザーの介入を警告する。
広く使われている3つのタスクの実験は、InferActの有効性を示している。
論文 参考訳(メタデータ) (2024-07-16T15:24:44Z) - Current state of LLM Risks and AI Guardrails [0.0]
大規模言語モデル(LLM)はますます洗練され、安全性と信頼性が最優先されるセンシティブなアプリケーションに広くデプロイされるようになる。
これらのリスクは、LSMを望ましい行動と整合させ、潜在的な害を軽減するために、"ガードレール"の開発を必要とする。
本研究は,LLMの展開に伴うリスクを調査し,ガードレールの実装とモデルアライメント技術に対する現在のアプローチを評価する。
論文 参考訳(メタデータ) (2024-06-16T22:04:10Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
本稿では,大規模言語モデル(LLM)の下流から発生するリスクについて検討する。
テキストベースのユーザ入力から派生した特定のユースケースに関連する脅威を特定し、ランク付けする新しいLCMベースのリスクアセスメントエンジン(GUARD-D-LLM)を導入する。
30の知的エージェントを統合することで、この革新的なアプローチは、悪夢のリスクを特定し、その重症度を測定し、緩和のためのターゲットとなる提案を提供し、リスク認識開発を促進する。
論文 参考訳(メタデータ) (2024-04-02T05:25:17Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and
Vulnerabilities [14.684194175806203]
大規模言語モデル(LLM)は詐欺、偽造、マルウェアの発生に誤用されることがある。
本稿では,LSMの生成能力による脅威と,そのような脅威に対処するための予防措置と,不完全な予防措置に起因する脆弱性との関係を分類する。
論文 参考訳(メタデータ) (2023-08-24T14:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。