論文の概要: Current state of LLM Risks and AI Guardrails
- arxiv url: http://arxiv.org/abs/2406.12934v1
- Date: Sun, 16 Jun 2024 22:04:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:37:55.283838
- Title: Current state of LLM Risks and AI Guardrails
- Title(参考訳): LLMリスクとAIガードレールの現状
- Authors: Suriya Ganesh Ayyamperumal, Limin Ge,
- Abstract要約: 大規模言語モデル(LLM)はますます洗練され、安全性と信頼性が最優先されるセンシティブなアプリケーションに広くデプロイされるようになる。
これらのリスクは、LSMを望ましい行動と整合させ、潜在的な害を軽減するために、"ガードレール"の開発を必要とする。
本研究は,LLMの展開に伴うリスクを調査し,ガードレールの実装とモデルアライメント技術に対する現在のアプローチを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.
- Abstract(参考訳): 大規模言語モデル(LLM)はますます洗練され、安全性と信頼性が最優先されるセンシティブなアプリケーションに広くデプロイされるようになる。
しかし、LSMには、バイアス、安全でない行動の可能性、データセット中毒、説明可能性の欠如、幻覚、再現不能など、それらに伴う固有のリスクがある。
これらのリスクは、LSMを望ましい行動と整合させ、潜在的な害を軽減するために、"ガードレール"の開発を必要とする。
本研究は,LLMの展開に伴うリスクを調査し,ガードレールの実装とモデルアライメント技術に対する現在のアプローチを評価する。
本稿では,本質的・外生的バイアス評価手法について検討し,AI開発における公正度指標の重要性について考察する。
エージェントLSMの安全性と信頼性について検討し、テスト容易性、フェールセーフ、状況認識の必要性を強調した。
外部, 二次, 内部レベルで動作する層状保護モデルを含む, LLMの保護のための技術戦略が提示される。
システムプロンプト、検索型拡張生成(RAG)アーキテクチャ、バイアスを最小限に抑え、プライバシを保護する技術が強調されている。
効果的なガードレールの設計には、LLMの意図したユースケース、関連する規制、倫理的考察を深く理解する必要がある。
正確性やプライバシといった競合する要件のバランスを取ることは、現在も進行中の課題です。
この研究は、現実世界のアプリケーションにおけるLLMの安全かつ責任ある使用を保証するために、継続的研究と開発の重要性を強調している。
関連論文リスト
- Are Smarter LLMs Safer? Exploring Safety-Reasoning Trade-offs in Prompting and Fine-Tuning [40.55486479495965]
大規模言語モデル (LLM) は様々なNLPベンチマークで顕著な成功を収めている。
本研究では,LLMにおける推論と安全性の相互作用について検討する。
推論能力が向上し、これまで見過ごされていた脆弱性に光を当てることによって生じる、潜伏する安全性のリスクを強調します。
論文 参考訳(メタデータ) (2025-02-13T06:37:28Z) - Internal Activation as the Polar Star for Steering Unsafe LLM Behavior [50.463399903987245]
SafeSwitchは、モデルの内部状態を監視し、利用することによって、安全でない出力を動的に制御するフレームワークである。
実証実験の結果,SafeSwitchは安全性ベンチマークで80%以上の有害な出力を削減し,有効性を維持していることがわかった。
論文 参考訳(メタデータ) (2025-02-03T04:23:33Z) - Large Language Model Safety: A Holistic Survey [35.42419096859496]
大規模言語モデル(LLM)の急速な開発と展開により、人工知能の新たなフロンティアが導入された。
この調査は、LLMの安全性の現在の状況の概要を包括的に紹介し、価値のミスアライメント、敵の攻撃に対する堅牢性、誤用、自律的なAIリスクの4つの主要なカテゴリをカバーしている。
論文 参考訳(メタデータ) (2024-12-23T16:11:27Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
大規模言語モデル(LLM)は、出現するジェイルブレイク攻撃に対してますます脆弱である。
この脆弱性は現実世界のアプリケーションに重大なリスクをもたらす。
本稿では,ガイドラインLLMという新しい防御パラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-10T12:42:33Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
本研究では,大規模言語モデル(LLM)の安全性を様々なタスクやプロンプトタイプにまたがる一般化を評価するための新しいベンチマークを開発する。
このベンチマークは、生成的および識別的評価タスクを統合し、LLMの安全性に対する迅速なエンジニアリングとジェイルブレイクの影響を調べるための拡張データを含む。
評価の結果,ほとんどのLDMは生成的タスクよりも差別的タスクが悪く,プロンプトに非常に敏感であり,安全アライメントの一般化が不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-29T11:47:01Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。