論文の概要: SumRec: A Framework for Recommendation using Open-Domain Dialogue
- arxiv url: http://arxiv.org/abs/2402.04523v1
- Date: Wed, 7 Feb 2024 02:06:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 17:05:50.647772
- Title: SumRec: A Framework for Recommendation using Open-Domain Dialogue
- Title(参考訳): SumRec:オープンドメイン対話を用いた推薦フレームワーク
- Authors: Ryutaro Asahara, Masaki Takahashi, Chiho Iwahashi, Michimasa Inaba
- Abstract要約: 本研究では,オープンドメインチャット対話からの情報を推薦する新しいフレームワークSumRecを提案する。
SumRecフレームワークは、対話から話者情報の要約を生成するために、大きな言語モデル(LLM)を使用している。
そして、話者とアイテム情報をスコア推定モデルに入力し、レコメンデーションスコアを生成する。
- 参考スコア(独自算出の注目度): 4.552428235927528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chat dialogues contain considerable useful information about a speaker's
interests, preferences, and experiences.Thus, knowledge from open-domain chat
dialogue can be used to personalize various systems and offer recommendations
for advanced information.This study proposed a novel framework SumRec for
recommending information from open-domain chat dialogue.The study also examined
the framework using ChatRec, a newly constructed dataset for training and
evaluation. To extract the speaker and item characteristics, the SumRec
framework employs a large language model (LLM) to generate a summary of the
speaker information from a dialogue and to recommend information about an item
according to the type of user.The speaker and item information are then input
into a score estimation model, generating a recommendation score.Experimental
results show that the SumRec framework provides better recommendations than the
baseline method of using dialogues and item descriptions in their original
form. Our dataset and code is publicly available at
https://github.com/Ryutaro-A/SumRec
- Abstract(参考訳): チャット対話には、話者の興味や好み、経験に関する有用な情報が含まれているが、オープンドメインのチャット対話からの知識は、様々なシステムをパーソナライズし、高度な情報を提供するために利用することができる。
To extract the speaker and item characteristics, the SumRec framework employs a large language model (LLM) to generate a summary of the speaker information from a dialogue and to recommend information about an item according to the type of user.The speaker and item information are then input into a score estimation model, generating a recommendation score.Experimental results show that the SumRec framework provides better recommendations than the baseline method of using dialogues and item descriptions in their original form.
私たちのデータセットとコードはhttps://github.com/Ryutaro-A/SumRecで公開されています。
関連論文リスト
- Snippet-based Conversational Recommender System [7.943863017830094]
SnipRecは顧客レビューのようなユーザ生成コンテンツ(UGC)から多様な表現や好みを抽出し、対話とレコメンデーションを強化する新しいCRSである。
このアプローチは、ドメイン固有のトレーニングの必要性を排除し、新しいドメインに適応し、ユーザの好みに関する事前の知識なしで有効にします。
論文 参考訳(メタデータ) (2024-11-09T04:23:58Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - Conversational Recommendation as Retrieval: A Simple, Strong Baseline [4.737923227003888]
会話レコメンデーションシステム(CRS)は,自然言語会話を通じて適切な項目をユーザに推薦することを目的としている。
ほとんどのCRSアプローチは、これらの会話によって提供されるシグナルを効果的に利用しない。
CRS項目推薦タスクに対して、代替情報検索(IR)スタイルのアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-23T06:21:31Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
本稿では,広く利用可能なアイテムコレクションにおいて,符号化された専門知識を活用することで,現実的な高品質な会話データを生成するTalkWalkを提案する。
人間の収集したデータセットで100万以上の多様な会話を生成します。
論文 参考訳(メタデータ) (2023-01-27T01:54:16Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
アイテム表現学習とユーザ嗜好モデリングの両方を改善するために,協調的拡張(COLA)手法を提案する。
すべての会話から対話型ユーザテムグラフを構築し,ユーザ認識情報によってアイテム表現を拡大する。
ユーザの嗜好モデルを改善するため,学習コーパスから類似した会話を検索し,ユーザの興味を反映した関連項目や属性を用いてユーザ表現を増強する。
論文 参考訳(メタデータ) (2022-12-15T12:37:28Z) - COOKIE: A Dataset for Conversational Recommendation over Knowledge
Graphs in E-commerce [64.95907840457471]
我々は,COOKIEと呼ばれる電子商取引プラットフォームにおける知識グラフに対する対話的推薦のための新しいデータセットを提案する。
データセットはAmazonのレビューコーパスから構築され、ユーザエージェント対話とカスタムナレッジグラフを統合してレコメンデーションする。
論文 参考訳(メタデータ) (2020-08-21T00:11:31Z) - Towards Conversational Recommendation over Multi-Type Dialogs [78.52354759386296]
ボットは、非推奨ダイアログからレコメンデーションダイアログへの会話を積極的に自然に導くことができる。
この課題の研究を容易にするために,人間と人による中国語対話データセットemphDuRecDial(約10k対話,約156k発話)を作成する。
各ダイアログでは、リコメンデータが積極的にマルチタイプのダイアログを導き、レコメンデーションターゲットにアプローチし、リッチなインタラクション動作で複数のレコメンデーションを行う。
論文 参考訳(メタデータ) (2020-05-08T11:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。